Cryptanalysis

- Assumption: (Kerckhoffs’ principle) the cryptosystem used is known to the opponent.
 - designer should not assume what system used can remain secret.
 - attack models: kind of information available to the adversary.

Attack models

- x=plaintext, y=ciphertext.
 1. ciphertext only attack: only y is known. (weakest type of attack models)
 2. known plaintext attack: some (x,y) where x→ y is known.
 3. chosen plaintext attack: temporary access to ek(x) [encryption machine]
 4. chosen ciphertext attack: temporary access to dk(y) [decryption machine]

Cryptanalysis using statistical properties

- statistical analysis is useful for most of mono-alphabetic cryptosystems of English text.
- basic idea:
 - relative frequency of 26 letters are quite different. (e.g. "E" vs. "Z").
 - there are popular digrams (e.g. "TH") and trigrams (e.g. "ING").
Table 1.1. Letter Frequency

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.068</td>
</tr>
<tr>
<td>B</td>
<td>0.015</td>
</tr>
<tr>
<td>C</td>
<td>0.020</td>
</tr>
<tr>
<td>D</td>
<td>0.015</td>
</tr>
<tr>
<td>E</td>
<td>0.010</td>
</tr>
<tr>
<td>F</td>
<td>0.022</td>
</tr>
<tr>
<td>G</td>
<td>0.020</td>
</tr>
<tr>
<td>H</td>
<td>0.091</td>
</tr>
<tr>
<td>I</td>
<td>0.070</td>
</tr>
<tr>
<td>J</td>
<td>0.002</td>
</tr>
<tr>
<td>K</td>
<td>0.003</td>
</tr>
<tr>
<td>L</td>
<td>0.003</td>
</tr>
<tr>
<td>M</td>
<td>0.024</td>
</tr>
<tr>
<td>N</td>
<td>0.067</td>
</tr>
<tr>
<td>O</td>
<td>0.075</td>
</tr>
<tr>
<td>P</td>
<td>0.019</td>
</tr>
<tr>
<td>Q</td>
<td>0.043</td>
</tr>
<tr>
<td>R</td>
<td>0.020</td>
</tr>
<tr>
<td>S</td>
<td>0.063</td>
</tr>
<tr>
<td>T</td>
<td>0.060</td>
</tr>
<tr>
<td>U</td>
<td>0.028</td>
</tr>
<tr>
<td>V</td>
<td>0.010</td>
</tr>
<tr>
<td>W</td>
<td>0.023</td>
</tr>
<tr>
<td>X</td>
<td>0.001</td>
</tr>
<tr>
<td>Y</td>
<td>0.020</td>
</tr>
<tr>
<td>Z</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Common Digram and Trigram

- **Common Digrams:**
 - TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF

- **Common Trigram:**
 - THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH

Cryptanalysis: affine cipher

- Encryption $e_a(x) = ax + b \mod 26$.
 - “a” and “b” are unknown.
- Some known ciphertext as in e.g. 1.10: FMXVEDKAPHERBNDKRXRSRE...
 - Frequency table in Table 1.2 (page 28).
- Matching most popular letters between Table 1.1 and Table 1.2 can be useful to solve “a” and “b”. (two unknowns and two equations)
Cryptanalysis: affine cipher

- Encryption $e_k(x) = ax + b \mod 26$.
- "a" and "b" are unknown.
- Matching Table 1.1 and Table 1.2 can reduce the number of ways to solve "a" and "b". (read e.g. 1.10, page 28-29).
- NOTE: since the key space is small (how many?), we can easily solve by an exhaustive search program.

Cryptanalysis: substitution cipher

- The key space is $26!$, too big for exhaustive search.
- We can use frequency table approach, along with digrams, and trigrams to solve.
- For a more complicated example, read e.g. 1.11, page 29-32.
Cryptanalysis: Vigenere cipher

- keyword of length m: \(k = (k_1, k_2, \ldots, k_m) \)
- \(m \) = key word length.
- \(y = (y_1, y_2, \ldots, y_n) \) is observed
- \(n \) = (large) ciphertext length, assume \(m \mid n \).
- \(e_k(x_i) = x_i + k_i \mod 26 \), \(i = 1, \ldots, m \) is the "position" in each block of size \(m \).
- Cryptanalysis: need to find \(m \) and \(k \).

Cryptanalysis: Vigenere cipher

- e.g. 1.12 (page 34) ciphertext:
 - CHREEVOAHMAERATBIAXXWTNXBE...
- Q: how to find \(m \) and keyword \(k \) ?
- A: Kasiski test.
- NOTE: CHR appeared five times at position 1, 166, 236, 276, and 286.
 - "distances" are multiple of 5. Hence \(m = 5 \).
- Other systematic method ?

\(I_c(\mathbf{x}) \): index of coincidence

- \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \)
- Let \(f_0, f_1, \ldots, f_{25} \) be the frequency counts of letters 'A', 'B', ..., 'Z' in \(\mathbf{x} \).
- Q: Randomly choosing two letters from \(\mathbf{x} \), what is the probability of being identical letter ? [denoted as \(I_c(\mathbf{x}) \)]
- A: \(I_c(\mathbf{x}) = \frac{\sum f_i (f_i - 1)}{n(n-1)} \). (why?)
Using $I_c(x)$ to find m

- $y = (y_1, y_2, \ldots, y_n)$ be the ciphertext.
- Divide y into m (guess) sub-strings as:
 - $y_1 = y_1, y_{m+1}, y_{2m+1}, \ldots$
 - $y_2 = y_2, y_{m+2}, y_{2m+2}, \ldots$
 - \ldots
 - $y_m = y_m, y_{2m}, y_{3m}, \ldots$
- Compute $I_c(y_i)$, $i=1, 2, \ldots, m$.
 - for correct m, the values of $I_c(y_i) \approx 0.065$?
 - for incorrect m, the values of $I_c(y_i) \approx 0.038$?

Block length m determination

- Recall $I_c(x) = \sum [f_i (f_i -1)]/[n(n-1)]$
 - If x is a regular English text, $I_c(x) = \sum p_i^2 \approx 0.065$.
 - p_i = the relative frequency in Table 1.1. ($i=0,1,\ldots,25$)
 - Note: $I_c(x)$ remains unchanged with permutation.
 - If x is a random text, $I_c(x) = \sum (1/26)^2 = 0.038$.
- For m indices $I_c(y_i)$, $i=1, 2, \ldots, m$.
 - if m is correct, y_i is a sub-string of regular English text, and the values of $I_c(y_i) \approx 0.065$
 - if m is incorrect, y_i is a sub-string of random test, and values of $I_c(y_i) = 0.038$

Example 1.12. Find m.

- e.g. 1.12 (page 34) ciphertext: CHREEVOAHMAERATBIAAXWNTXBE...
 - if $m=1$, only one string, $I_c(y) = 0.045$
 - if $m=2$, $I_c(y_1) = 0.046$, $I_c(y_2) = 0.041$
 - if $m=3$, $I_c(y) = 0.043$, 0.050, 0.047
 - if $m=4$, $I_c(y) = 0.042$, 0.039, 0.045, 0.040
 - if $m=5$, $I_c(y) = 0.063$, 0.068, 0.069, 0.0061, 0.072. (≈ 0.065)
Find key k

- Divide y into m sub-strings as
 - $y_1 = y_1', y_{m+1}', y_{2m+1}', \ldots$
 - $y_2 = y_2', y_{m+2}', y_{2m+2}', \ldots$
 - \ldots
 - $y_m = y_m', y_{2m}', y_{3m}', \ldots$

 Note: Each letter in y_i has been shifted by the same amount $g=k_i$. We search for g such that $M_g = \sum p_j Q_{j+g} = \sum p_j^2 \approx 0.065$. [why ?]
 - Q_{j+g} is the relative letter frequency in y_i.

Example 1.12. Find key k

- e.g. 1.12 (page 34) ciphertext: CHREEVOAHMAERATBIAXXWTNXBE...
- $m=5$. Divide the ciphertext into 5 substrings. y_1, y_2, \ldots, y_5.
- For each $g=0,1,2,\ldots,25$ compute $M_g(y_i)$ as shown in Table 1.4 (page 35)
- The correct key index g are boxed.
 - $k=(9,0,13,4,19)=JANET$. (show!)

Table 1.4 (page 35)
Hill cipher

- $P=C=(\mathbb{Z}_{26})^m$
- $K=(\mathbb{Z}_{26})^{mxm}$, key K is a mxm matrix.
- plaintext: $x=(x_1, x_2, ..., x_m)$
- ciphertext: $y=(y_1, y_2, ..., y_m)$
- $e_k(x) = xK \pmod{26}$,
- $d_k(y) = yK^{-1} \pmod{26}$.

Cryptanalysis: Hill cipher

- Can be hard to break with ciphertext only.
 - statistical frequency analysis is not useful. why not?
- However, it is quite simple to break under known plaintext attack.
 - collect at least m pairs of (x, y) and solve a mxm matrix equation. (how?)

Break Hill cipher

- For $i=1,2,...,m$
 - i-th plaintext: $x=(x_{i1}, x_{i2}, ..., x_{im})$
 - i-th ciphertext: $y=(y_{i1}, y_{i2}, ..., y_{im})$
 - $y = xK \pmod{26}$, K unknown.
- Q: how find K (and therefore K^{-1}) ?
- A: stack x together as matrix X, stack y together as matrix Y. We can solve
 - $Y = XK$ by $YX^{-1} = K \pmod{26}$.
Example 1.13

Suppose \(\text{fraday} \rightarrow \text{PQCFKU} \) using Hill cipher with \(m=2 \). Find the key matrix.

1. fr \(\rightarrow \) PQ: \([5, 17] = [15, 16] \)
2. id \(\rightarrow \) CF: \([8, 3] = [2, 5] \)
3. ay \(\rightarrow \) KU: \([0, 24] = [10, 20] \)

From first two equations, we can solve a 2x2 matrix equation: (show!!)
\[
Y = X'K
\]

Q: what if we don't know \(m \)?

LFSR key stream cipher

\[
z_{i+m} = c_0 z_i + c_1 z_{i+1} + \ldots + c_{m-1} z_{i+m} \mod 2
\]

\(c_0 = 1 \), other \(c_i \) is 0 or 1.
Max period = \(2^m - 1 \).

How to choose "keys" \(c_i \)?

We can break the cryptosystem with a partial sequence (with length \(2m \)) of \(z_i \).
Q: How?

Cryptanalysis: LFSR stream cipher

\[
\begin{align*}
z_{m+1} &= c_0 z_1 + c_1 z_2 + \ldots + c_{m-1} z_m \\
z_{m+2} &= c_0 z_2 + c_1 z_3 + \ldots + c_{m-1} z_{m+1} \\
z_{m+3} &= c_0 z_3 + c_1 z_4 + \ldots + c_{m-1} z_{m+2} \\
\vdots \\
z_{2m} &= c_0 z_m + c_1 z_{m+1} + \ldots + c_{m-1} z_{2m-1}
\end{align*}
\]

re-written as (column) \(z = M c, c = M^{-1} z \).
m equations, m unkowns.
LFSR Cryptoanalysis Example

- e.g. 1.14 (page 38). Assume m=5 is known.
- Given a pair of (x,y) for x → y = x+z mod 2.
- key stream (LFSR) is z = x+ y mod 2. (why?)
- we can find the key stream generator.

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z = x + y mod 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Example 1.14 (page 38)

```
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>out 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>out 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>out 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>out 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>out 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c = M^t z = (1,0,0,1,0)'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{out} = (z_i + z_{i+3}) mod 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Summary and HW2

- What we have learned so far?
- Crypto-analysis for various ciphers?
- Mathematical tools?

- HW2: Write a program to solve 1.21 or to verify Table 1.4.
Chapter Review: Modulus and Matrix operations

- Modulus operations
 - \((-a) \mod m, a^{-1} \mod m\).
- Matrix Multiplication
- Matrix Inverse
 - 2x2 matrix
 - mxm matrix
 - Matrix Inverse \mod m.

Chapter Review: Euler totient function \(\phi(n)\)

- \(\phi(n)\): number of integers between 1 and \(n\) that are relative prime to \(n\).
- Computation of \(\phi(n)\):
 1. \(\phi(p^e) = p^{e-1}(p-1)\)
 2. \(\phi(P \cdot Q) = \phi(P) \cdot \phi(Q)\), if \(\gcd(P, Q) = 1\).
- E.g.
 - \(\phi(20) = \#(1, 3, 7, 9, 11, 13, 17, 19) = 8\)
 - \(\phi(5) = \#(1, 2, 3, 4) = 4\)
 - \(\phi(4) = \#(1, 3) = 2\)

The Use of Encryption

- DES and AES (Ch 3)
- Cryptographic Hash Functions (Ch 4)
- Digital Signatures (Ch 7)
- Certificates (Ch 9)
- Key Exchange/Distribution (Ch 10)