Iterated Hash Functions

- Generic Construction Method
- The Merkle-Damgard Construction
- The Secure Hash Algorithm (SHA)
Generic Construction Method

- Suppose that we have already has a compression function, say, `compress` that maps from \(\{0,1\}^{m+t} \rightarrow \{0,1\}^m \).
- \(m = \) message digest size, \(t \geq 1 \).
- As usual,
 - \(|x| = \) length of a bitstring \(x \)
 - \(x \ || \ y = \) bitstring \(x \), \(y \) concatenation.
x = input bit string. assume |x| > m+t.

y = constructed from x with some padding function, say pad(x), so that

- y = x || pad(x) can be divided evenly in blocks of size t:
 - y = y₁ || y₂ || ... yᵣ.
 - |yᵢ| = length of yᵢ = t, for 1 ≤ i ≤ t.
Generic Construction
Processing Step

- **IV** = public initial value of length m.
- Use **compress** function to iteratively process the r blocks of \(y_i \)'s as in:
 - \(z_0 \leftarrow IV \)
 - \(z_1 \leftarrow compress(z_0 \ || \ y_1) \)
 - \(z_2 \leftarrow compress(z_1 \ || \ y_2) \)
 - ...
 - \(z_r \leftarrow compress(z_{r-1} \ || \ y_r) \)
The final hash function is defined as $h(x) = g(z_r)$, where
- $g: \{0,1\}^m \rightarrow \{0,1\}^l$ is a public function, it is optional.
- if no transformation required, $h(x) = z_r$.

See Fig 4.1 (page 131) for illustration.

Merkle-Damgard Construction Method is an example of this type of iterative hash function with a formal security proof.
FIGURE 4.1
The processing step in an iterated hash function
Transforming $x \rightarrow y$

- Initial mapping of x to y must be 1-1.
- Why? If we can find $x \neq x'$ that $y = y'$, then $h(x) = h(x')$ as defined (why?).
- $h(x)$ is no longer a collision-resistant hash function even if we assume the compress function used is collision-resistant.
- $y = x \ || \ pad(x)$ is clearly 1-1. (why?)
Merkle-Damgard Construction Method

- Suppose that \(\text{compress}: \{0,1\}^{m+t} \rightarrow \{0,1\}^m \) is a collision-resistant function.
- Goal: Using this function, \(\text{compress} \), to construct a “provable” collision-resistant hash function, \(h(x) \), that maps from unbounded space, \(X \), to \(\{0,1\}^m \).
- We will consider (a) \(t \geq 2 \), then (b) \(t \geq 1 \).
Basic Step of Algorithm 4.6. Merkle-Damgard(x), \(t \geq 2 \).

- Let \(n = |x| \), divide \(x \) into blocks of size \((t-1)\), except (possibly) the last block. How many blocks?
 - \(k = \lceil \frac{n}{(t-1)} \rceil = \text{ceil}(n/(t-1)) \).

- \(x = x_1 \ || \ x_2 \ || \ ... \ || \ x_k \), pad the last block \(x_k \) with \(d \) copies of 0's. How many?
 - \(d = (t-1) - |x_k| = k(t-1) - n \).

- Define \(y_k \leftarrow x_k \ || \ 0^d \)
 - \(y_i \leftarrow x_i \), for \(i = 1,2,..,k-1 \).
 - \(y_{k+1} \leftarrow (t-1) \) bits binary representation of \(d \).

- \(y = y_1 \ || \ y_2 \ || \ ... \ || \ y_k \ || \ y_{k+1} \), each block of \(y_i \) is now of size \((t-1)\).
Simple illustration

- \(n = |x| = 123456 \)
- \(t = 100, \) block of size \((t-1)=99\)
- \(k = \text{ceil}(123456/99) = \text{ceil}(1247.03) = 1248 \)
- \(d = k(t-1)-n = 96 = 1100000_2 \)
- \(x' \leftarrow x_1 \parallel x_2 \parallel ... \parallel (x_{1248} \parallel 0^{96}) \)
- \(y \leftarrow x' \parallel (0^{92} \parallel 1100000) \)
- \(y = y_1 \parallel y_2 \parallel ... \parallel y_{1249}. \)
Algorithm 4.6. Merkle-Damgard(x), t ≥ 2.

- Suppose that \(\text{compress}: \{0,1\}^{m+t} \rightarrow \{0,1\}^m \) is a collision-resistant function.
- \(k = \lceil n/(t-1) \rceil, \ n = |x| \)
- Construct \(y = y_1 \parallel y_2 \parallel \ldots \parallel y_k \parallel y_{k+1} \)
- \(g_1 \leftarrow \text{compress}(0^{m+1} \parallel y_1) \)
- for i from 1 to k do
 - \(g_{i+1} \leftarrow \text{compress}(g_i \parallel 1 \parallel y_{i+1}) \)
- \(h(x) \leftarrow g_{k+1}; \ \text{return} \ (h(x)). \)
Theorem 4.6 (page 133)

- Theorem 4.6. If \texttt{compress}(x) is a collision resistant function, then \texttt{h}(x) in Algorithm 4.6 is a collision resistant hash function.

- Basic idea: If we can find a collision for \texttt{h}(x), we can find a collision for \texttt{compress}(x) in polynomial time.
Proof of Theorem 4.6

- Suppose $x \neq x'$ and $h(x) = h(x')$.
 - $y(x) = y_1 \| y_2 \| ... \| y_k \| y_{k+1}$
 - $y(x') = y'_1 \| y'_2 \| ... \| y'_l \| y'_{l+1}$

- Case 1: $|x| \neq |x'| \mod (t-1)$.
- Case 2a: $|x| = |x'|$
- Case 2b: $|x| \neq |x'|$ but $|x| = |x'| \mod (t-1)$
Case 1: $|x| \neq |x'| \mod (t-1)$

- This implies different number of 0’s padded $d \neq d'$ and $y_{k+1} \neq y'_{l+1}$.
 - $g_{k+1} = \text{compress}(g_k \| 1 \| y_{k+1}) = h(x)$
 - $h(x') = g'_{l+1} = \text{compress}(g'_{l} \| 1 \| y'_{l+1})$
 - Since $h(x) = h(x')$ but $y_{k+1} \neq y'_{l+1}$, we have found a collision (which one ?) for $\text{compress}(z)$.
Case 2a: \(|x| = |x'|\)

- This means \(k = l\) and \(y_{k+1} = y'_{k+1}\).
- Similar to Case 1, we have
 - \(\text{compress}(g_k || 1 || y_{k+1}) = \text{compress}(g'_k || 1 || y'_{k+1})\)
 - if \(g_k \neq g'_k\), then we have found a collision for \(\text{compress()}\).
 - if \(g_k = g'_k\), use the same argument, find
 - \(\text{compress}(g_{k-1} || 1 || y_k) = \text{compress}(g'_{k-1} || 1 || y'_k)\)
 - if \(g_{k-1} \neq g'_{k-1}\) or \(y_k \neq y'_k\), then we have found a collision for \(\text{compress()}\) else repeat.
Case 2b:

$|x| \neq |x'|$ but $|x| = |x'| \mod(t-1)$

- Without loss of generality, assume $k < l$
- Applying similar to Case 2a, we have
 - either found the collision during the iteration process, or we reach the final situation that
 - $\text{compress}(0^{m+1} || y_1) = g_1 = g_{l-k+1} = \text{compress}(g'_{l-k} || 1 || y'_{l-k+1})$.
 - m-th bit of the $0^{m+1} || y_1$ is 0, which is different from the m-th bit of $g'_{l-k} || 1 || y'_{l-k+1}$. Hence, we have found a collision.
Algorithm 4.7. Merkle-Damgard(x), t = 1.

- Suppose that compress: \(\{0,1\}^{m+1} \rightarrow \{0,1\}^m \) is a collision-resistant function. \(f(0)=0; f(1)=01 \).
- \(n = |x|, x = x_1 \parallel x_2 \parallel ... \parallel x_n \)
- \(y \leftarrow 11 \parallel f(x_1) \parallel f(x_2) \parallel ... \parallel f(x_n) \)
- Let \(y = y_1 \parallel y_2 \parallel ... \parallel y_{k-1} \parallel y_k \)
- \(g_1 \leftarrow \text{compress}(0^m \parallel y_1) \)
- for i from 1 to k-1 do
 - \(g_{i+1} \leftarrow \text{compress}(g_i \parallel y_{i+1}) \)
- \(h(x) \leftarrow g_k \); return \(h(x) \).
Theorem 4.7 (page 135)

Theorem 4.7. If \texttt{compress}(x) is a collision resistant function, then \texttt{h(x)} in Algorithm 4.7 is a collision resistant hash function.

Basic idea: Similar to Theorem 4.6 and the property that there is no \(x \neq x' \) that \(y(x) \) and \(y(x') \) are prefix/postfix of each other.
Secure Hash Algorithm (SHA)

History of SHA:
- 1990: MD4 proposed by Rivest.
- 1993: SHA by NIST adopted as FIPS180.
- 1995: SHA-1, minor variation of SHA (renamed as SHA-0), as FIPS180-1.
Various SHA Properties

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Message Size (bits)</th>
<th>Block Size (bits)</th>
<th>Word Size (bits)</th>
<th>Message Digest Size (bits)</th>
<th>Security² (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA-1</td>
<td>$< 2^{64}$</td>
<td>512</td>
<td>32</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>SHA-256</td>
<td>$< 2^{64}$</td>
<td>512</td>
<td>32</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>SHA-384</td>
<td>$< 2^{128}$</td>
<td>1024</td>
<td>64</td>
<td>384</td>
<td>192</td>
</tr>
<tr>
<td>SHA-512</td>
<td>$< 2^{128}$</td>
<td>1024</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>

Secure Hash Algorithm Properties
Cryptosystem 4.1 SHA-1(x)

- \(y \leftarrow SHA-1-PAD(x) = M_1 || M_2 \ldots || M_n \)
 - each \(|M_i| = 512\), \(M_i = (W_0, W_1, \ldots, W_{15})\).
- \((H_0, H_1, H_2, H_3, H_4) \leftarrow IV\) (160-bits)
- for \(i\) from 1 to \(n\) do
 - \((A, B, C, D, E) \leftarrow (H_0, H_1, H_2, H_3, H_4)\)
 - \((A, B, C, D, E) \leftarrow compress(A, B, C, D, E, M_i)\)
 - \((H_0, H_1, H_2, H_3, H_4) += (A, B, C, D, E) \mod 2^{32}\)
- return \((H_0 || H_1 || H_2 || H_3 || H_4)\)
SHA-1 Initial Vector (IV)

- For SHA-1, the initial hash value, H_0, H_1, H_2, H_3, H_4, consists of five 32-bit words, in hex.
- Total bits = 160.
- Q: How about replace IV with a private key?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>67452301</td>
</tr>
<tr>
<td>H_1</td>
<td>EFCDAB89</td>
</tr>
<tr>
<td>H_2</td>
<td>98BADCFE</td>
</tr>
<tr>
<td>H_3</td>
<td>10325476</td>
</tr>
<tr>
<td>H_4</td>
<td>C3D2E1F0</td>
</tr>
</tbody>
</table>
Algorithm 4.8: SHA-1-PAD(x)

- Assume length of binary x, $|x| \leq 2^{64}-1$.
- $L = 64$-bit binary representation of $|x|$.
- $y \leftarrow x || 1 || 0^d || L$, where
 - $0^d = d$ copies of 0.
 - $d \leftarrow (447-|x|) \mod 512$. (why ?)
 - $|y|$ must be a multiple of 512.
 - $|x|+ 1 + d + 64 = 0 \mod 512$.
 - $d = -65 - |x| = (447- |x|) \mod 512$.
32-bits Operations in SHA-1

<table>
<thead>
<tr>
<th>operations</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \land Y$</td>
<td>X bitwise “and” Y</td>
</tr>
<tr>
<td>$X \lor Y$</td>
<td>X bitwise “or” Y</td>
</tr>
<tr>
<td>$X \oplus Y$</td>
<td>X bitwise “xor” Y</td>
</tr>
<tr>
<td>$X + Y$</td>
<td>$X + Y \mod 2^{32}$</td>
</tr>
<tr>
<td>$\sim X$</td>
<td>bitwise 1s complement of X</td>
</tr>
<tr>
<td>$\text{ROTL}^s(X)$</td>
<td>circular left shift of X by s bits.</td>
</tr>
</tbody>
</table>
compress(A,B,C,D,E,M_i)

- $|M_i| = 512$, $M_i = (W_0, W_1, ..., W_{15})$.
- for t from 16 to 79 do
 - $W_t \leftarrow \text{ROTL}^1(W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16})$
- for t from 0 to 79 do
 - $T \leftarrow \text{ROTL}^5(A) + f_t(B,C,D) + E + W_t + K_t$
 - $E \leftarrow D$; $D \leftarrow C$; $C \leftarrow \text{ROTL}^{30}(B)$; $B \leftarrow A$; $A \leftarrow T$
 - $f_t: \{0,1\}^{32 \times 3} \rightarrow \{0,1\}^{32}$. K_t: 32-bit key.
SHA-1 $f_t(B,C,D)$ functions

- $f_t(B,C,D) =$
 - $(B \land C) \lor ((\sim B) \land D)$, if $0 \leq t \leq 19$.
 - $B \oplus C \oplus D$, if $20 \leq t \leq 39$.
 - $(B \land C) \lor (B \land D) \lor (C \land D)$, if $40 \leq t \leq 59$.
 - $B \oplus C \oplus D$, if $60 \leq t \leq 79$.
SHA-1 constants: K_t

- $K_t =$
 - 5A827999, if $0 \leq t \leq 19$.
 - 6ED9EBA1, if $20 \leq t \leq 39$.
 - 8F1BBCDC, if $40 \leq t \leq 59$.
 - CA62C1D6, if $60 \leq t \leq 79$.
SHA-1 Example
(Short Message, Initial setup)

- message “abc” has length 24. Its binary representation is 00..011000.
- number of 0’s to be padded, \(d = 447 - 24 = 423 \). Hence, \(y \) is one block of 512 bits below:

\[
\begin{align*}
\text{“a”} & \quad 01100001 \\
\text{“b”} & \quad 01100010 \\
\text{“c”} & \quad 01100011 \quad 1 \quad 00...00 \\
& \quad 00...011000.
\end{align*}
\]
SHA-1 Example
(Short Message, 1st Block)

<table>
<thead>
<tr>
<th>W_0</th>
<th>61626380</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td>00000000</td>
</tr>
<tr>
<td>W_2</td>
<td>00000000</td>
</tr>
<tr>
<td>W_3</td>
<td>00000000</td>
</tr>
<tr>
<td>W_4</td>
<td>00000000</td>
</tr>
<tr>
<td>W_5</td>
<td>00000000</td>
</tr>
<tr>
<td>W_6</td>
<td>00000000</td>
</tr>
<tr>
<td>W_7</td>
<td>00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W_8</th>
<th>00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_9</td>
<td>00000000</td>
</tr>
<tr>
<td>W_{10}</td>
<td>00000000</td>
</tr>
<tr>
<td>W_{11}</td>
<td>00000000</td>
</tr>
<tr>
<td>W_{12}</td>
<td>00000000</td>
</tr>
<tr>
<td>W_{13}</td>
<td>00000000</td>
</tr>
<tr>
<td>W_{14}</td>
<td>00000000</td>
</tr>
<tr>
<td>W_{15}</td>
<td>000000018</td>
</tr>
<tr>
<td>t</td>
<td>a</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
</tr>
<tr>
<td>0</td>
<td>0116fc33</td>
</tr>
<tr>
<td>1</td>
<td>8990536d</td>
</tr>
<tr>
<td>2</td>
<td>a1390f08</td>
</tr>
<tr>
<td>76</td>
<td>a079b7d9</td>
</tr>
<tr>
<td>77</td>
<td>860d21cc</td>
</tr>
<tr>
<td>78</td>
<td>5738d5e1</td>
</tr>
<tr>
<td>79</td>
<td>42541b35</td>
</tr>
</tbody>
</table>
SHA-1 Example (Final Output)

t = 79 : 42541b35 5738d5e1 21834873 681e6df6 d8fdf6ad

For SHA-1, the initial hash value, \(H^{(0)}\), is

\[
H_0^{(0)} = 67452301 \\
H_1^{(0)} = \text{efcdab89} \\
H_2^{(0)} = \text{98badcfe} \\
H_3^{(0)} = 10325476 \\
H_4^{(0)} = \text{c3d2e1f0}.
\]

\[
H_0^{(1)} = 67452301 + 42541b35 = \text{a9993e36} \\
H_1^{(1)} = \text{efcdab89} + 5738d5e1 = \text{4706816a} \\
H_2^{(1)} = \text{98badcfe} + 21834873 = \text{ba3e2571} \\
H_3^{(1)} = 10325476 + 681e6df6 = \text{7850c26c} \\
H_4^{(1)} = \text{c3d2e1f0} + \text{d8fdf6ad} = \text{9cd0d89d}.
\]
SHA-1 Example (Long Message)

- $x =$ binary-coded form of the ASCII string which consists of 1,000,000 repetitions of the character “a”.
- Find the values of the parameters involved (e.g. n, d, y, and last block):
 - “a” = 01100001$_2$.
 - $n = |x| =$ length of bit-string = 1,000,000*8 and its binary = 11110100001001001000000000.
SHA-1 Example
(Long Message, Parameters)

- \(n = 8 \times 1,000,000 / 512 = 15625 \) blocks.
- \(d = 512 - 64 - 1 - 0 = 447 \) 0’s padded.
 - (why ?)
- \(y = 1,000,000 \) copies of 01100001 ("a") followed by 1, padded with 447 0’s, and
 - \(L = 000\ldots01111010000100100000000000. \)
 - (L is left-padded with 0 to make 64 bits)
SHA-1 Example
(Long Message, Blocks Info.)

- First 15625 blocks: 64 copies of “a”.
- Last block: 1 || 0^{447} || L.
 - L=000…0111101000010010000000000.
- The resulting SHA-1 message digest is:
 - 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F.
Collisions for hash functions

- Mid-1990: collisions of compression function used in MD4 and MD5 found.
- 1998: collisions for SHA-0 can be found in $O(2^{61})$, better than birthday attack of $O(2^{80})$.
- 2004: actual collisions found for SHA-0, MD5.
- 2005: actual collisions found for (58-round) reduced version of SHA-1.
- 2005: estimate collisions for SHA-1 can be found in $O(2^{69})$. [Wang, Yin, and Yu]
Summary

- General step of iterated hash function.
- Merkle-Damgard Construction Method.
 - Use compress: $\{0,1\}^{m+t} \rightarrow \{0,1\}^m$ a collision-resistant function to construct a “provable” collision-resistant hash function of a large text.
 - two cases: (a) $t \geq 2$, (b) $t \geq 1$.
- SHA-1, PAD function, and examples.