A Generalization of the Assouad Embedding

Sariel Har-Peled Nirman Kumar

March 2010

Abstract

Assouad [Ass83] showed that any metric \mathcal{M} of doubling dimension \dim can be embedded into l^d_{∞} where $d \leq \varepsilon - O(\dim)$ with distortion at most $(1 + \varepsilon)$. If $X \subseteq \mathcal{M}$ is of doubling dimension, we show that we can use the Assouad technique to embed X into l^d_{∞} such that the distances from $X \cup S$ to X are preserved where $S \subseteq \mathcal{M}$ is an arbitrary but fixed finite set.

1 Modification of Assouad’s embedding

Assouad [Ass83] showed that any metric \mathcal{M} of doubling dimension \dim can be embedded into l^d_{∞} where $d \leq \varepsilon - O(\dim)$ with distortion at most $(1 + \varepsilon)$. Following the description in [HM05], we obtain the following result:

Theorem 1.1 Given a metric space $(\mathcal{M}, d_{\mathcal{M}})$, a subset $X \subseteq \mathcal{M}$ such that X has doubling dimension \dim, and a finite subset $S \subseteq \mathcal{M}$, we can map the metric $(X \cup S, d_{\mathcal{M}})$ into l^d_{∞} with $d \leq \varepsilon - O(\dim)$ by a mapping Φ such that for any $x \in X \cup S$ and any $y \in X$ \[\|\Phi(x) - \Phi(y)\| \leq 1 + O(\varepsilon). \]

The following elementary lemma, which we mention without proof, is used in the proof below.

Lemma 1.2 Let $(\mathcal{M}, d_{\mathcal{M}})$ be any metric space and let $S \subseteq \mathcal{M}$ be a set of points such that for each $x \in \mathcal{M}$, $d(x, S) = \inf\{d(x, y) | y \in S\}$ exists and is attained for some $y \in S$. Then $d(x, S)$ is 1-lipschitz.

Proof: Given $r > 0$, we first show how to embed $(X \cup S, d_{\mathcal{M}})$ into l^d_{∞} with $d_1 \leq \varepsilon - O(\dim)$ such that the following hold

1. For any $x \in X \cup S$ and $y \in X$, \[\|\phi^r(x) - \phi^r(y)\| \leq \min\{r, d_{\mathcal{M}}(x, y)\}. \]
2. For $x \in X \cup S$, $y \in X$ if $d_{\mathcal{M}}(x, y) \in [(1 + \varepsilon)r, 2r]$ then \[\|\phi^r(x) - \phi^r(y)\| \geq (1 - \varepsilon)r. \]

Let $N^{(r)}$ be an εr net of X. Suppose we color the points of $N^{(r)}$ such that any two points p, q with $d_{\mathcal{M}}(p, q) \leq 4r$ get colored differently. Since the metric $(\mathcal{M}, d_{\mathcal{M}})$ is of doubling dimension \dim, $d_1 = (\frac{4}{\varepsilon})^{\dim} = \varepsilon - O(\dim)$ colors are sufficient for this purpose. For each color i denote the set of points in $N^{(r)}$ with color i by C_i and define the value $\phi^r_i(x) = \max\{0, r - d_{\mathcal{M}}(x, C_i)\}$. It is easy to see that $\phi^r_i(x) \leq r$ and hence
\[\| \phi^{(r)}(x) - \phi^{(r)}(y) \| \leq r. \] If \(d_M(x, y) > r \) then clearly \(\| \phi^{(r)}_i(x) - \phi^{(r)}_i(y) \| < d_M(x, y) \) for each \(i \). Let \(d_M(x, y) \leq r \) and \(i \) be a color. If \(\phi^{(r)}_i(x) = 0 = \phi^{(r)}_i(y) \) or \(\phi^{(r)}_i(x) = r - d_M(x, C_i), \phi^{(r)}_i(y) = r - d_M(y, C_i) \), then also \(\| \phi^{(r)}_i(x) - \phi^{(r)}_i(y) \| \leq d_M(x, y) \). The other two cases are similar and so we consider one of them where \(\phi^{(r)}_i(x) = r - d_M(x, C_i) \) and \(\phi^{(r)}_i(y) = 0 \). Let \(d_M(x, C_i) = d_M(x, p) \) where \(p \in C_i \). Notice that \(r \leq d_M(y, C_i) \leq d_M(y, p) \) Then,

\[
\| \phi^{(r)}_i(x) - \phi^{(r)}_i(y) \| = r - d_M(x, p) \\
\leq d_M(y, p) - d_M(x, p) \\
\leq d_M(x, y)
\]

In all the cases \(\| \phi^{(r)}_i(x) - \phi^{(r)}_i(y) \| \leq d_M(x, y) \). Thus \(\| \phi^{(r)}_i(x) - \phi^{(r)}_i(y) \| \leq d_M(x, y) \).

The other property can be seen as follows. Suppose \(d_M(x, y) \in [(1 + \varepsilon)r, 2r) \) and \(y \in X \). There is a point \(p \) of the net \(N^{(r)} \) such that \(d_M(y, p) \leq \varepsilon r \). Let \(i \) be the color of \(p \). Thus \(\phi^{(r)}_i(y) \geq (1 - \varepsilon)r \). Now \(d_M(x, p) \geq r \) and for any other point \(q \) of color \(i \), \(d_M(q, x) \geq 4r - (2 + \varepsilon)r = (2 - \varepsilon)r \) and so \(d_M(x, C_i) \geq r \). This means \(\phi^{(r)}_i(x) = 0 \) and so in this coordinate \(i \), \(\| \phi^{(r)}_i(x) - \phi^{(r)}_i(y) \| \geq (1 - \varepsilon)r \) and therefore

\[\| \phi^{(r)}(x) - \phi^{(r)}(y) \| \geq (1 - \varepsilon)r. \]

The rest of the Assouad construction should follow verbatim, but we reproduce it here for completeness. We use the maps \(\phi^{(r)} \) constructed above for various values of \(r \) to embed points in \(X \cup S \) into \(\mathbb{R}^{d_1 d_2} \) with the \(l_\infty \) metric for some number \(d_2 \) depending on \(\varepsilon \). The exact dependence of \(d_2 \) of \(\varepsilon \) will be specified later. For each integer \(k \), let \(\phi_k(x) \) denote the mapping which maps \(x \) to the matrix with \(d_2 \) rows and \(d_1 \) columns where the \(k \mod d_2 \) row is the vector \(\phi^{(1 + \varepsilon)^k}(x) \) as above and the rest of the entries are zero. We define \(\phi(x) \) as

\[
\phi(x) = \sum_{k \in \mathbb{Z}} \frac{\phi_k(x)}{(1 + \varepsilon)^{k/2}}
\]

We now estimate the value of \(\| \phi(x) - \phi(y) \| \). Let \(l_0 \in \mathbb{Z} \) be the unique integer for which \(d_M(x, y) \in [(1 + \varepsilon)^{l_0+1}, (1 + \varepsilon)^{l_0+2}) \). We notice that for the integer \(l_0 \) the map \(\phi_{l_0}(z) \), which is just \(\phi^{(1 + \varepsilon)^{l_0}}(z) \) with more coordinates that are zero, has the scale \(r = (1 + \varepsilon)^{l_0} \) such that \(d_M(x, y) \in [(1 + \varepsilon)r, 2r) \). We choose \(d_2 = 8\varepsilon^{-1} \log(\varepsilon^{-1}) \) in what follows. In the row of the matrix congruent to \(l_0 \mod d_2 \) the difference between \(\phi(x) \) and \(\phi(y) \) can be lower bounded as

\[
\left\| \sum_{k \in \mathbb{Z}} \phi_{l_0+k d_2}(x) - \phi_{l_0+k d_2}(y) \right\|_\infty \geq \left\| \phi_{l_0}(x) - \phi_{l_0}(y) \right\|_\infty - \sum_{k < 0} \left\| \phi_{l_0+k d_2}(x) - \phi_{l_0+k d_2}(y) \right\|_\infty \\
- \sum_{k > 0} \left\| \phi_{l_0+k d_2}(x) - \phi_{l_0+k d_2}(y) \right\|_\infty \\
\geq (1 - \varepsilon)(1 + \varepsilon)^{l_0/2} - \sum_{k > 0} \frac{(1 + \varepsilon)^{l_0+2} - (1 + \varepsilon)^{(l_0+k d_2)/2}}{(1 + \varepsilon)^{(l_0+k d_2)/2}} \\
= (1 - O(\varepsilon))\sqrt{d_M(x, y)}
\]

On the other hand, for any integer \(a \in \{0, 1, \ldots, d_2 - 1\} \) we have for the rows with
index congruent to \((l_0 + a) \mod d_2\)

\[
\left\| \sum_{k \in \mathbb{Z}} \phi_{l_0 + a + kd_2}(x) - \phi_{l_0 + a + kd_2}(y) \right\| \leq \sum_{k \leq 0} \| \phi_{l_0 + a + kd_2}(x) - \phi_{l_0 + a + kd_2}(y) \|_\infty \\
+ \sum_{k > 0} \| \phi_{l_0 + a + kd_2}(x) - \phi_{l_0 + a + kd_2}(y) \|_\infty \\
\leq \sum_{k \leq 0} \frac{(1 + \varepsilon)^{2 + l_0 + a + kd_2}}{(1 + \varepsilon)^{(l_0 + a + kd_2)/2}} + \sum_{k > 0} \frac{(1 + \varepsilon)^{l_0 + 2}}{(1 + \varepsilon)^{(l_0 + a + kd_2)/2}} \\
= (1 + O(\varepsilon)) \sqrt{d_M(x, y)}
\]

Thus it follows (by a tedious calculation) that \(\|\phi(x) - \phi(y)\| \leq (1 + O(\varepsilon)) \sqrt{d_M(x, y)}\), see [HM05] for more details.

References
