Continuous Inference of Psychological Stress from Sensory Measurements Collected in the Natural Environment

Kurt Plarre
Computer Science University of Memphis

Joint work with:
Daniel Siewiorek, Asim Smailagic (Carnegie Mellon University)
Marcia Scott (National Institute on Alcohol Abuse and Alcoholism)
Emre Ertin (Ohio State University)
Andrew Raij (University of South Florida)
Amin Ali, Monowar Hossain, Santosh Kumar (University of Memphis)
Motohiro Nakajima, Mustafa al’Absi, Lorentz E. Wittmers Jr (UMN)
Thomas Kamarck (University of Pittsburgh)
Outline

- Motivation and Background

- Stress model development (lab data)
 - Physiological stress model
 - Perceived stress model

- Model evaluation on field data

- Conclusions and Future Work
Outline

- Motivation and Background
 - Stress model development (lab data)
 - Physiological stress model
 - Perceived stress model
 - Model evaluation on field data
- Conclusions and Future Work
Negative Effects of Stress on Health

- Excessive stress adversely affects
 - Body
 - Mind

- Over long time it increases risk of
 - Physical illness: cancer, cardiovascular health
 - Mental illness: depression, anxiety disorder

- Strong motivation to study stress
 - Measure continuously, in natural environment

- Need robust methods for measuring stress
Measuring Stress in the Field

- **Self-reports have been used for a long time**
 - Questionnaires or surveys
 - Measure perceived stress

- **Strengths and limitations**
 - Capture detailed information
 - Discrete sampling
 - Burden to participant

- **Need an **automated** approach for **continuous** stress measurement in the field**
The Quest for Automated Stress Measure

- Predicting psychological state from physiology
 - William James – pioneering work (1880)
 - John Cacioppo and others – revitalized interest (1990)

- Many emotion and stress prediction studies
 - Identified stress and emotion markers (Heart rate, skin conductance)
 - Mostly in controlled settings

- Few studies in uncontrolled environments
 - Either no validated stressors, no lab session to train models, not able to account for confounders, or tried to match self-reports directly
Challenges of Stress Study in Field

1. **Need an unobtrusively wearable sensor system**
 - Collect multiple sensor modalities
 - Provide scientifically valid data

2. **Control for confounding factors**
 - Activity, change in posture, food, all affect physiological measurements

3. **Account for between-person differences**

4. **Unavailability of ground truth in the field**
 - Self-reports are one source of ground truth
In the AutoSense Project

- We developed a new wearable sensor suite
- Conducted scientific user study with validated stress protocol
 - 21 participants, 2 hour lab study, 2 day field study
 - Protocol designed by behavioral scientists
 - Stressors used are validated and known to produce stress
 - Self-reports designed by expert behavioral scientist
 - Participants wore AutoSense for in lab and for two days in field

- Developed new stress models to measure
 - Physiological response to stress
 - To measure adverse physiological effects of stress
 - Perception of stress in mind
 - To derive a continuous rating of perceived stress
AutoSense Wearable Sensor Suite

- Respiration Band
- ECG Electrodes
- Temperature Probe

ECG, Respiration, GSR, accelerometer, Ambient & skin temp.
Alcohol, accelerometer, PPG, in arm band

Self-reports

Android G1 Cell Phone

Continuous Stress Inference, Kurt Plarre
IPSN 2011
AutoSense Wearable Sensor Suite

- Respiration Band
- ECG Electrodes
- Temperature Probe

Self-reports

ECG, Respiration, GSR, accelerometer, Ambient & skin temp.

Alcohol, accelerometer, PPG, in arm band

Continuous Stress Inference, Kurt Plarre
IPSN 2011
Outline

- Motivation and Background

- **Stress model development (lab data)**
 - Physiological stress model
 - Perceived stress model

- Model evaluation on field data

- Conclusions and Future Work
Lab Study – Stress Protocol

- **2 hour lab session**
 - Subjects exposed to three types of stressors
 - Public speaking – psychosocial stress
 - Mental arithmetic – mental load
 - Cold pressor – physical stress

- **Physiological signals recorded at all times**
 - Using AutoSense
 - Also, collected self-reported stress rating 14 times
Self-Report Measures of Stress

- Self-report questions related to affective state

<table>
<thead>
<tr>
<th>Question</th>
<th>Possible Answer</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheerful?</td>
<td>YES yes no NO</td>
<td>3 2 1 0</td>
</tr>
<tr>
<td>Happy?</td>
<td>YES yes no NO</td>
<td>3 2 1 0</td>
</tr>
<tr>
<td>Frustrated/Angry?</td>
<td>YES yes no NO</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>Nervous/Stressed?</td>
<td>YES yes no NO</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>Sad?</td>
<td>YES yes no NO</td>
<td>0 1 2 3</td>
</tr>
</tbody>
</table>

Continuous Stress Inference, Kurt Plarre
IPSN 2011
Overview of Model Development

Continuous Stress Inference, Kurt Plarre
IPSN 2011
Impact of lab stressors on ECG measure

- Selected 1 minute intervals from each period
- Removed outliers from RR intervals
- Computed 35 features
 - Normalized features
Identified 22 Features from Respiration

Basic Features
- Inhalation Duration
- Exhalation Duration
- Respiration Duration
- Insp./Exp. Ratio
- Stretch
- Breathing Rate
- Minute Ventilation

Statistical Features
- Mean
- Median
- 80th Percentile
- Quartile Deviation

Continuous Stress Inference, Kurt Plarre
IPSN 2011
Computed 13 Features from ECG

Basic Features
- RR Intervals
 - RSA

Statistical Features
- Variance
- Power in low/medium/high frequency bands
- Ratio of low frequency/high power
- Mean
- Median
- 80th Percentile
- Quartile Deviation

[ECG Signal Diagram]

Continuous Stress Inference, Kurt Plarre
IPSN 2011
Feature and Classifier Selection

- Used Weka for Training
 - Evaluated Decision Tree, DT with Adaboost, and Support Vector Machine
 - Using 10-fold cross validation, and training/test data

- Classification results using 35 features

<table>
<thead>
<tr>
<th>J48 Decision Tree</th>
<th>J48 with Adaboost</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.67%</td>
<td>90.17%</td>
<td>89.17%</td>
</tr>
</tbody>
</table>

- After feature selection, 13 features
 - 8 Respiration, 5 ECG
Classification Accuracy on Lab Data

Features:
- Selected (S)
- All (A)
- RIP (R)
- ECG (E)

Stressors:
- All
- Instruction
- Speaking
- Mental Arithmetic (Standing)
- Mental Arithmetic (Seated)
- Cold Pressor

Continuous Stress Inference, Kurt Plarre
IPSN 2011
Perceived Stress Model

- **Want to relate physiological classifier to self-report**
 - Predict what the person would have responded

- **Self-report rating**
 - Five answers mapped to real value
 - Average of 5 numerical codes

<table>
<thead>
<tr>
<th>Answer</th>
<th>Value (-)</th>
<th>Value (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>no</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>yes</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>YES</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Using a Hidden Markov Model

- Use a binary Hidden Markov Model

 \(s_t \in \{0,1\} \) is perceived stress

 \[\pi_t = P[s_t = 1 \mid x_1, \ldots, x_t] \] is perceived stress value

- To reduce number of parameters we approximate \(\pi_t \) by

 \[\hat{\pi}_t = \alpha \hat{\pi}_{t-1} + \beta x_t \]

 \(\alpha, \beta \) person-dependent parameters
Evaluation of the Model (on Lab Data)

- Correlation of accumulation model and self-report rating

- 21 Participants

- Median correlation
 - 0.72

- Values of ρ<0.5
 - Not significant

Continuous Stress Inference, Kurt Plarre
IPSN 2011
Outline

- **Motivation and Background**
 - Stress model development (lab data)
 - Physiological stress model
 - Perceived stress model

- **Model evaluation on field data**

- **Conclusions and Future Work**
Field Study Protocol

- **Participants wore AutoSense continuously, for 2 days**
 - Going about their life (home, school, etc.)
 - Except at night

- **Field self-reports**
 - Participants responded to self-reports 20+ times each day
 - Same questions about affect state as in the lab
 - Additional context information

- **Additional behaviors automatically collected**
 - Speaking, from respiration patterns
 - Physical activity, from accelerometer
Realities of Natural Environment

- Data eliminated
 - 37% affected by activity
 - 30% poor quality
- Less than 4 min consecutive data
- 4 subjects missing data or self-report
Realities of Natural Environment

- Evaluation is on average stress level over both days
Evaluation of the Model (Field)

- Compared average stress ratings over both days
- Accumulation model versus self-report
- Linear interpolation

![Graph showing the correlation between perceived stress and self-reported stress with R=0.71]
Conclusions and Future Work

- The long-standing question on whether stress can be measured automatically in the field has now been answered
 - The focus can now shift from “Whether” to “How Well?”
 - Three additional user studies (with 50+ subjects) in progress for additional refinement and validation of stress model

- New apps can now be developed for monitoring of stress and to help reduce stress in daily life
 - For example, to select a less stressful route for driving

- Mediators of stress can now be investigated in the field
 - For example, relationship between stress, smoking, drinking, physical activity, entertainment, etc.