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ABSTRACT
Automated detection of social interactions in the natural en-
vironment has resulted in promising advances in organiza-
tional behavior, consumer behavior, and behavioral health.
Progress, however, has been limited since the primary means
of assessing social interactions today (i.e., audio recording)
has several issues in field usage such as microphone occlu-
sion, lack of speaker specificity, and high energy drain, in
addition to significant privacy concerns.

In this paper, we present mConverse, a new mobile-
based system to infer conversation episodes from respiration
measurements collected in the field from an unobtrusively
wearable respiratory inductive plethysmograph (RIP) band
worn around the user’s chest. The measurements are wire-
lessly transmitted to a mobile phone, where they are used
in a novel machine learning model to determine whether
the wearer is speaking, listening, or quiet. Our model in-
corporates several innovations to address issues that natu-
rally arise in the noisy field environment such as confounding
events, poor data quality due to sensor loosening and detach-
ment, losses in the wireless channel, etc. Our basic model
obtains 83% accuracy for the three class classification. We
formulate a Hidden Markov Model to further improve the
accuracy to 87%. Finally, we apply our model to data col-
lected from 22 subjects who wore the sensor for 2 full days
in the field to observe conversation behavior in daily life and
find that people spend 25% of their day in conversations.
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1. INTRODUCTION
Over the past decade, research in social signal process-

ing [25] has demonstrated the value of automatically record-
ing social interactions in daily life. Researchers have success-
fully used wearable sensors (e.g., Sociometer badge [17]) to
automatically capture data on social interactions both at the
individual level and at the group level, including interaction
dynamics such as average duration of speaking during inter-
actions, percentage of time speaking, etc. Via deployments
of these devices on employees in different organizations such
as banks, hospitals, and call centers, it has been found that
such information can be remarkably valuable to the organi-
zational management process. Using these badges in a user
study showed that informal conversations account for 40-
60% of the variation of the productivity of creative teams
in an organization [18]. In a study on call center productiv-
ity, it was found that facilitating informal interactions led to
savings of $15 million per year [26]. Researchers have also
used these badges in behavioral studies to investigate the
impact of social interactions on behavioral health (e.g., diet
choice, exercise) [14], epidemiological behavior change [13],
consumer behavior during shopping [8], etc. Such devices,
however, are obtrusive in nature. For example, Sociometers
are to be worn around the neck like identification badges.
Though at workplaces it is not unnatural for employees to
wear name tags or identification badges, the obtrusiveness
of these devices make it unattractive for daily life usage.

To address the obtrusiveness issue of Sociometer like
badges, state-of-the-art methods for speech detection in nat-
ural environment leverage audio signals captured on the mi-
crophone of mobile phones. They extract frequency domain
features from the audio signal and can detect human voice
even in the presence of ambient noise [11, 27]. This ap-
proach, however, introduces several limitations of its own.
First, microphone occlusion is common in natural environ-
ments because people tend to keep mobile phones in pockets
and purses. Microphone occlusion can make it difficult to
collect audio signals of sufficient quality for speech detection.
Second, microphone-based speech detection is not speaker-
specific because the microphone can pick up the speech of
anyone nearby. Thus, additional signal processing is needed
to determine whether it is indeed the user’s voice [10]. Third,



Figure 1: Overview of the system: training and deploy-

ment. The speaking, listening and quiet classifier and

the HMM model are developed using data collected in

the natural environment (shown on the left of the fig-

ure). The classifier and the HMM model is then applied

to the field data obtained from the study participants

(shown on the right of the figure) to identify conversa-

tion episodes and their characteristics.

mobile phones have computational and energy limitations.
Frequent microphone sampling and feature computation in
the frequency domain has a high computational and energy
cost. Lastly, use of microphones also raises privacy concerns.
A privacy study in [9] shows that 91.3% of participants were
not willing to be audio recorded. Seventy-five percent re-
mained uncomfortable even if audio is recorded only in the
frequency domain. Moreover, users of audio recording de-
vices (e.g. Personal Audio Loop) are also greatly concerned
about the privacy of others (conversation partners, passers
by), whose data might be captured without their consent [7].

In this paper, as a feasible alternative, we propose mCon-
verse, a mobile-phone based system that uses respiration
measurements captured from an unobtrusively wearable wire-
less respiration sensor to infer naturally-occurring conver-
sation events in real-time in the field. Use of respiration
measurements, eliminates the obtrusiveness, specificity, and
privacy issues, inherent in an audio-based system. Wearing
of respiration sensors may also provide some other bene-
fits to the wearer. For example, psychological stress can be
reliably measured from respiration measurements [20] and
hence daily stress can be monitored together with conver-
sations. Respiration measurements can also provide the in-
tensity of physical activity, which when used with the infer-
ence of physical activity classes from the phone’s accelerom-
eters [12] can lead to accurate estimation of calorie expen-
diture. Similarly, respiration measurements can provide in-
tensity of exposure to environmental pollutants, which when
used with pollution exposure detection on a mobile phone
(e.g., PEIR [16]), can provide an accurate estimation of the
extent of daily pollution exposure.

The design of mConverse involves several challenges. First,

since the respiration sensor is a physiological sensor worn on
the body, it is prone to activation by confounding factors
not related to conversation. These include various forms of
physical activity (e.g., walking, jogging, exercise), sneezing,
yoga, etc. Second, due to movement of the body, the chest
band may gradually become loose, causing a degradation in
data quality, which may need to be detected and corrected
quickly. Third, respiration data is transmitted to the mobile
phone wirelessly and, therefore, tolerance to data lost in the
wireless channel needs to be built-in to the system.

The mConverse system carefully addresses each of these
issues. First, since physical activity such as walking or run-
ning, may degrade the quality of respiration measurements
due to jerks, a physical activity detection module on the
mobile phone is used to infer the level of activity [20]. The
inference of conversation is suspended when the wearer is
detected to be undergoing significant physical activity. Sec-
ond, a sensor displacement detector module on the mobile
phone is used to detect when the chest band is loose [19].
Wearer of the sensor is prompted on the mobile phone to
correct the placement and tighten the respiration band.

Third, in order to make robust inferences, the sensor
measurements are segmented into windows so that various
robust statistics can be computed over each window. From
experiments conducted with data captured in realistic en-
vironments, we find that a 30 second window provides best
tradeoff between accuracy and robustness. With this design,
each 30 second period is classified into three states — quiet,
listening or speaking. In natural environment, though, the
durations of speaking, listening, or quiet episodes are rarely
multiples of 30 seconds. Therefore, we assign each win-
dow to a state that occurs for the maximum duration in
that window. For example, if the duration of speaking is
20 seconds and that of listening is 10 seconds, in a 30 sec-
ond window, then the classifier classifies the entire window
as a speaking event. The windowing technique enables the
system to handle the missing data issue in a hierarchical
manner. Missing data within a window is handled by in-
terpolation based methods if the amount of received data
exceeds a minimum threshold, otherwise the entire window
is discarded. Discarded windows produce a “missing deci-
sion” in the sequence of decisions, and are later “filled in” by
a Hidden Markov Model.

To develop and validate the model, we collected 46 hours
of data from 12 subjects in their natural environment that
was carefully marked for beginning and end of conversation
episodes, including start/end times of speaking/listening events.
For this dataset, our basic model for classifying three classes
(i.e., quiet, listening, and speaking) obtains 83% accuracy.
We formulate a Hidden Markov Model to further improve
the accuracy to 87%.

In summary, this paper makes the following main con-
tributions. First, we identify novel respiration features to
distinguish quiet, listening and speaking states. To the best
of our knowledge, this is the first work to show that inference
of listening state is possible from respiration measurements.
Second, we propose a data processing pipeline that can be
used to make robust context inferences on mobile phones
that can tolerate data lost during wireless transmission be-
tween wearable sensors and mobile phones. Third, we apply
our model to data collected from the natural environment
of 22 subjects to discover natural conversation behavior in
daily life such as average duration and frequency of conver-



Table 1: Summary of statistics obtained from the
field data (average value and standard deviation).

Statistic Avg. ± St.Dev.

Duration of conversation (min.) 3.82 ± 3.04

Time between conversations (min.) 13.38 ± 23.86

Duration of speaking (sec.) 34.2 ± 0.6

Duration of listening (sec.) 47.4 ± 6.2

Conversations per hour 2.96 ± 1.6

Percentage time in conversation 25.6 ± 5

sations, average duration of speaking and listening within
conversations, and several others, as shown in Table 1.

Potential Applications. Automated monitoring of
natural conversations and transitions between the speaking
and listening states within a conversation opens the door for
developing several new applications. First, a mobile phone
can become conversation-aware, e.g., switch the phone to
vibrate mode, update the users’ social network status to
“busy”, etc. during conversations. Second, capturing differ-
ent features of conversation, such as fraction of time spent
in conversations per day, fraction of time spent speaking in a
conversation, and time between successive speaking episodes
during a conversation, provides useful cues to a user in-
terested in improving his/her interpersonal communication
skills. Such an application can become even more valuable
if it can also record the user’s stress level before, during,
and after a conversation episode, using recently developed
models that provide reliable inference of psychological stress
using the same respiration measurements [20]. Third, link-
ing the concomitant physiological changes and psychological
stress with sensitive and specific detection of conversation
will set the stage for developing more effective diagnostic
and intervention methods. Such technology can, for exam-
ple, help in identifying episodes of intense emotions such as
anger which could precipitate cardiac events in vulnerable
individuals. The technology could then be used to deliver
opportunistic interventions that could be signaled to the pa-
tient in real time.

Organization. Section 2 describes some related work.
Sections 3 and 4, respectively present the data acquisition
procedure and the features and classification process in de-
tail. Section 5 presents the Hidden Markov Model used
to improve conversation detection, while Section 6 presents
analysis of daily conversation behavior from field data. Sec-
tion 7 concludes the paper.

2. RELATED WORK
There is a rapidly growing interest in inferring conver-

sations on mobile phones so that natural social interactions
can be monitored automatically. Most efforts have, how-
ever, focussed on using audio recordings [11, 12, 10, 32].
Soundsense [11] was the one of the first systems to process
audio signals captured on the phone’s microphone to de-
tect human speech. The energy consumption of microphone
pipeline can, however, be quite high. The sampling of audio
signal itself can consume energy as high as 30 times the idle
state [10]. Although separate sensor boards can be attached
to a phone to offload the audio sampling during quiet peri-
ods [10], it may not be convenient and acceptable to many

users. Additionally, privacy concerns arise in continuous
capture of audio in the field since voices of other people may
be recorded unintentionally. Several studies [9, 7] show that
most participants, who are asked to carry audio recording
devices, feel uncomfortable because of these privacy issues.
Some work address this issue by only capturing privacy sen-
sitive features from audio, from which it is not possible to
reconstruct the original voice [32]. Interestingly, 75% par-
ticipant’s in the above mentioned privacy study were still
worried about privacy when they were told that the audio
would be stored in the frequency domain. Use of respira-
tion based conversation detection together with audio based
systems can potentially address both of these limitations.

Processing of respiration measurements does not involve
any frequency domain processing and involves computations
every 30 seconds as opposed to sub-second processing. When
speaking event is detected, audio capture can be activated
to obtain more specific information such as speaker iden-
tification [10]. Doing so will also significantly improve the
specificity of conversation detection. Since, with this design,
audio will now be captured only when the wearer is involved
in conversations, privacy issues related to capture of unre-
lated individuals may also be mitigated to some extent.

There have been some work on the processing of respira-
tion measurements, but the focus has largely been on health
issues such as monitoring breathing disorders (e.g., sleep ap-
nea syndrome) detection [24, 6], emotion recognition [22],
and stress [20]. There have been some preliminary work on
analyzing individual breath cycles during human speech [29,
23, 15, 28]. It has been observed that respiration during pe-
riods when the user is silent, is more rhythmic in contrast to
periods when the user is speaking [15]. It is shown in [15, 28]
that the ratio between the inhalation duration to exhalation
duration is the most discriminatory feature between quiet
and speaking periods. However, in these studies, respira-
tion measurements are obtained in a lab environments and
identification of conversation episode is not addressed. In
a preliminary work [21], we showed that the ratio between
inhalation and exhalation durations as a single feature is
not robust enough for discriminating speech and quiet when
respiration measurements are collected in the field.

In summary, none of the above mentioned works shows
how listening can be detected. Detection of listening is nec-
essary to reliably mark the entire conversation episode. This
paper is the first to propose a set of features computed from
the respiration signal, and a robust classifier to distinguish
among quiet, listening, and speaking events.

3. DATA ACQUISITION
In this section, we describe the sensor suite we used to

capture respiration measurements and the data collection
experiment for collecting respiration measurements that we
use for developing the classifiers.

3.1 The Sensor Suite
We use the AutoSense sensor suite [3] that includes a

Respiratory Inductive Plethysmograph (RIP) band to mea-
sure relative lung volume and breathing rate (see Figure 2).
RIP uses a conductive thread that is sewn in a zigzag fashion
to the elastic band. An alternating current source is applied
to the resulting loop of wire, which, in turn, generates a
magnetic field that opposes the current whose strength is
proportional to the area enclosed by the wire according to



Figure 2: Respiratory Inductive Plethysmograph band

(in blue color) and the AutoSense sensor board.

Figure 3: Overview of the mConverse system.

Lenz’s law. The ratio of the magnetic flux to the current
is called self-inductance. Therefore, changes to the chest
circumference can be measured by measuring the changes
to the self inductance of the band. The inductance mea-
surement purely depends on the geometry of the band and
is not related to the tension in the band. As a result, the
measurement is not prone to the trapping of the band and
associated artifacts due to changes in tension. The sensor
suite also includes a 3-axis accelerometer which is used to
detect the level of physical activity of the wearer. The sen-
sors transmit data to an Android mobile phone in real-time
over a low-power wireless link.

3.2 Data Collection for Model Development
We collected data from 12 subjects (10 men, 2 women)

for a total of 2,772 minutes (or 46.2 hours). The subjects
wore the chest band in their natural environment and were
accompanied by an observer. The observer marked the start
and end times of the wearer’s speaking, listening, and quiet
episodes on the mobile phone that received the respiration
measurements via wireless channel. After extracting the
data, we assigned event labels to each 30 second window.
A window is assigned to an event if that event occurs for
≥ 66% of the total duration of the window. Otherwise, we
label the window as missing.

4. DISTINGUISHING QUIET, LISTENING,
AND SPEAKING EVENTS

We describe the development and evaluation of our model

that classifies 30 second windows of respiration measure-
ments in quiet, listening, and speaking events. Figure 4
shows a snapshot of respiration signals during listening, quiet,
and speaking segments to illustrate the difference in breath-
ing pattern during these three states. Figure 3 shows the
entire procedure for identifying conversation episodes from
respiration measurements. This sections describes the data
processing pipeline stages for preprocessing, feature compu-
tation, and classification. Hidden Markov Model and post-
processing, which is applied to the output of the classifier to
further improve its accuracy, is described in Section 5.

Figure 4: Representative respiration signal during lis-

tening, quiet and speaking events. Y-axis represents

ADC values which corresponds to the amplitude of rel-

ative lung volume.

4.1 Preprocessing & Identification of Respi-
ration Cycles

Before computing features, we segment respiration mea-
surements in 30-second intervals, identify windows with suf-
ficiently valid data (i.e., admission control), impute missing
samples, and remove outliers. These measurements are then
used to identify the locations of the peaks and valleys of each
respiration cycle. These steps are illustrated in Figure 5 and
described in the following.

Windowing. We could follow two approaches for win-
dowing – overlapping windows and non-overlapping win-

Figure 5: Preprocessing of the respiration signal.



Figure 6: Window length (sec) vs. accuracy(%).

dows. Overlapping windows are able to capture the charac-
teristics signature of respiration more precisely, but are too
intense for implementation on resource-constrained mobile
phones that may be making multiple concurrent rich infer-
ences such as stress, posture, physical activity, location, etc.
In a 30 second window, we usually observe, on average, 5-10
breathing cycles. This number is large enough to allow us
to compute various statistics over feature values. Figure 6
shows how classification accuracies vary with different win-
dow lengths. Although longer windows give slightly better
accuracy, it reduces the granularity of measurement since
one window can only be assigned to one class of event (i.e.,
speaking, listening, or quiet). Since we find that increasing
the window length to > 30 seconds provides only marginal
improvement in accuracy, we use 30 seconds for the window
length.

Admission Control. We use admission control to de-
cide which windows to pass through to upper layers since a
window may not have enough data of good quality to com-
pute feature statistics with sufficient reliability. We note
that data quality may be affected by noise, sensor displace-
ment, and sensor detachment. We use three criteria in ad-
mission control.

Physical Activity. Physical activity affects the breathing
pattern, making it harder to reliably infer speaking events
when the wearer is undergoing physical activity. Physical
activity is detected automatically from accelerometer sen-
sors in the AutoSense sensor suite. All windows affected by
physical activity are ignored and considered lost.

Data Quality. In order to infer the context with higher
confidence from sensor data, we must ensure good quality
of measurements. Several events adversely affect the quality
of data, such as loosening of the RIP band, sensor displace-
ment, and sensor detachment. These events are detected by
the data quality detector [19], and all windows affected by
them are ignored.

Missing Samples. Some measurement samples are lost in
the wireless channel. Figure 9 shows the cumulative distri-
bution of data lost in 30-second windows that were obtained
from 22 subjects who they wore the RIP sensor for 2 days
in the field. We find that 87% windows had a loss rate of
< 34%. Hence, we use this as the threshold, i.e., all 30-
seconds that have ≥ 66% of samples are accepted.

Imputing Lost Data. In windows of measurements
that have ≥ 66% of valid samples, we apply spline inter-
polation to fill in the missing values. We use the standard
spline function from MATLAB.

Removing Outliers. There are several methods to de-

Figure 7: Illustration of features.

tect outliers from data [1]. Since quartiles are less sensitive
to spikes that may appear in respiration measurements col-
lected in noisy field environments, we use them for outlier
detection. We first find the upper quartile (LQ) and lower
quartile (UQ) values in a window. The interquartile range
(IQR) is the difference between the upper and lower quar-
tiles, i.e., IQR = UQ − LQ. Outliers are defined as those
points that are ≥ 1.5IQR + UQ or ≤ LQ− 1.5IQR.

Identifying Respiration Cycles. To identify a respi-
ration cycle, its peak and valley are to be located. We use a
modified version of the peak-valley detection algorithm pre-
sented in [29, 23] to locate the peaks and valleys for each
respiration cycle in a 30-second window, after applying the
above described preprocessing steps. In order to remove spu-
rious peaks, we set a lower threshold for a measurement to be
considered a peak. From experiments, we find that setting

this threshold to the 75th percentile of the signal amplitudes
for each window works well. We also require that duration
between two successive peaks must be at least 1.5 seconds.
It means that duration of each respiration cycle can not be
as short as 1.5 seconds for an individual. Through visual
inspection, we find that the performance of the peak-valley
detection algorithm has 96.11% accuracy. If the number of
valid peaks and valleys in a segment is sufficient (more than
3 respiration cycles) then we calculate features from this
window. Otherwise, this window is ignored.

4.2 Feature Identification
We identify six distinct features that are computed from

the respiration signal. We identify three features from exist-
ing work and propose three new features. We investigated
several features from visual inspection and narrowed it down
to three after determining their discriminatory power using
feature selection algorithms. Computation of the features in-
volves the identification of the respiration cycles, which are
composed of an inhalation and an exhalation period. We
now define these six features in the following and illustrate
them in Figure 7.
Existing Features. We first describe three features that
have previously been proposed for identifying speaking events
from respiration [15]. IE ratio is defined as the ratio of
inhalation duration to the exhalation duration of a respi-
ration cycle. IE ratio has been traditionally referred to be
the most distinguishing feature for this classification. In-
halation duration corresponds to the time elapsed from a
valley of a respiration signal, to the subsequent peak. The
amplitude difference in signal values between these points
is the maximum expansion of the chest during a respiration



Figure 8: 80th percentile of Stretch values for each win-

dow in different user states.

cycle (see Figure 7); exhalation duration corresponds to
the time duration between a peak and the subsequent val-
ley. Exhalation duration during speech tends to be longer
than that of silence. Use of only IE ratio did not prove to
be sufficient in natural environment; it provides a classifica-
tion accuracy of only 64.12% for speaking vs. not-speaking
events.
New Features. We now describe the three new features
we identified in this work. We observed that people tend
to hold their breath while speaking, pause to take a deep
breath, and repeat this cycle. The features proposed below
are meant to capture this distinguishing pattern.

• First Difference of Exhalation is derived by com-
puting the first order differences of the exhalation du-
rations. This difference is observed to be lower during
quiet events because the breathing pattern is regular.

• Stretch is the difference between the amplitude of the
peak, and the minimum amplitude the signal attains
within a respiration cycle (see Figure 7). Stretch values
are found to be large during speaking events as people
tend to take relatively deep breath as they talk.

• B-Duration is defined as the time the signal continues
to stay within 2.5% of the minimum amplitude. It is
found to be longer during speaking events because we
tend to hold our breath during speaking.

Feature Extraction. There are multiple respiratory
cycles in a 30-second window and each cycle produces a value
for each of the 6 features. To reduce the effect of noise and
outliers (e.g. spikes in the respiration signal due to move-
ment) we compute four statistics over the values of each
feature produced in a 30-second window. We find mean,

median, standard deviation and 80th percentile to be useful
features for our classification. Thus, we consider a total of
24 features in training the classifiers. As an illustration, Fig-

ure 8 shows the 80th percentile values of stretch (computed
for each window) in different user states. It can be observed
that these values are visibly higher during public speaking
and non-public speaking events whereas they are the lowest
during quiet periods.

Normalization. We observed that the variability of the
respiration signal across subjects is quite high. Therefore,
we normalize them to reduce these inter-subject differences
for building a robust classifier. In order to normalize the
features, we first compute each feature. Then, we compute
mean and standard deviation for each feature, for each sub-
ject, across all the events (i.e. quiet, speaking, listening) for

that subject. This corresponds to the global mean and stan-
dard deviation for the specific subject. We then compute the
z-score of the features for each window, by subtracting the
mean and dividing by the standard deviation. The z-scores
of the features are then used for classification purposes.

Feature Selection. Feature selection methods typi-
cally fall into two broad categories- (a) wrappers, which eval-
uate the set of features using the classification algorithm that
is to be applied to the data, and (b) filters, which are inde-
pendent of the classification algorithm and evaluate the set
of features by using heuristics based on general characteris-
tics of the data [5]. Wrappers are less general in the sense
that the feature selection process, in the case of wrappers,
is tightly coupled with a classification algorithm, and must
be re-run when switching from one classification algorithm
to another.

We use the filter approach for feature selection proposed
in [5]. We employ the filtering method called CFS (Correla-
tion based Feature Selection), which removes irrelevant and
redundant features to output a feature subset that contains
features highly correlated with (i.e., predictive of) the class,
yet uncorrelated with (i.e., not predictive of) each other. An
important criterion of filter based methods is the direction
of search in the feature space. The best fit method used
with CFS algorithm searches the space of feature subsets by
greedy hill-climbing augmented with backtracking. Setting
a bound on the number of consecutive non-improving nodes
permitted controls the level of backtracking, i.e. limiting the
number of fully expanded subsets that result in no improve-
ment. We set the stopping criterion to five and use Best
First Method with forward, backward, and bi-directional
searches.

Table 2: Feature selection based on the CFS algo-
rithm with best fit search.

Basic Feature Feature Statistics

Inhalation Duration Standard Deviation

Exhalation Duration Mean, Median, 80th Percentile

IE ratio
Mean, Median, Standard
Deviation, 80th Percentile

Stretch Mean, Median, 80th Percentile

Bduration
Median, Standard Deviation,

80th Percentile

Exhal First Difference Mean

Upon executing feature selection, we find that at least
one of the statistics computed over each of the six features
are selected for classification (see Table 2). We use these
selected feature statistics to train the classifiers.

4.3 Training and Classification
We consider three challenges during classification. First,

how to label each window during training, given that each
30 sec window can have multiple transitions of speaking,
listening, and quiet? Second, how to determine the tolerance
level for data loss in each window? Third, how to identify
listening from respiration measurements, which has not been
attempted yet?

For the first case, we define purity of the ground truth.
If we have the entire 30 sec period of speaking, quiet, or
listening, then the window has 100% pure label. If the win-
dow has more than one label, then the window will have



Figure 9: CDF of missing data in the field.

impurity in its label. We consider the label that occurs for
the longest duration in the window as its ground truth. We
do experiment training on 100% pure labeled data and test
that model with 100% pure labeled data, and impure labeled
data. We also try training on impure labeled data and test
on 100% pure, and impure labeled data. We did not find
significant difference in accuracy. However, training on im-
pure labeled data and testing on impure label data produces
better results. In fact, this condition matches with most of
the typical conversations in real life because speaking and
listening switches rapidly within each 30 sec time span.

For the second challenge, we calculate the probability of
data missing in the field from our field study. We show the
cumulative density function of missing data in the Figure 9.
Since 87% of the windows have < 34% missing data, we
train our classifier with tolerance of 34% missing data rate.

Identifying Listening Events. To the best of our
knowledge, there is no classifier that distinguishes listening
from speaking and quiet states, using respiration measure-
ments. To detect listening from the respiratory measure-
ment is especially challenging, since, depending on the dura-
tion of listening, the signal can be similar to quiet or similar
to speaking. In a two party conversation, listening contains
some non-verbal expressions to demonstrate engagement,
which produces some irregularity in the respiration cycle
compared to the quiet state. It needs more air to the lung.
Stretch of each cycle, therefore, falls in between the stretch
of the speaking and quiet respiration cycles, and becomes a
distinguishing feature for identifying listening events.
Classification Algorithm & Accuracy. We train Deci-
sion Tree (J48), SVM, and AdaBoostM1(J48) [30] classifiers
using both the selected feature set and the entire feature
sets using Weka Tool [31, 30] on the 12-subject data set de-
scribed in Section 3.2. We use 10-fold cross validation to
obtain classification accuracies. The results appear in ta-
ble 3. They correspond to training and testing with impure
labeling. Validation using 66-34% split also produces similar
classification accuracy. The best accuracy (83.51%) is found
using the boosted decision tree, although the performance
of other classifiers are comparable. Also, there is no signifi-
cant change in the classifiers’ performance when we use only
the features selected by the CFS algorithm. For ease of im-
plementation, we choose the decision tree model for mobile
phone implementation.

We find that listening is sometimes misclassified as speak-
ing. This is not an issue though for identifying conversation
episodes since conversation consists of both speaking and
listening. Since quiet states mark the boundary of a conver-
sation, misclassifying listening as quiet is more problematic.

This misclassification, however, is limited to 6.25%. The
classification accuracy is further reduced by using a Hidden
Markov Model (HMM) to find the most probable sequence
of speaking, listening, and quiet, to correct the results of the
classifier, as discussed in Section 5.

5. CONSTRUCTING CONVERSATION
EPISODES

We define a conversation episode as the period between
two successive quiet events. Because each classification win-
dow length is 30 seconds, the shortest duration of a conver-
sation that can be identified using the method described in
this work is 30 seconds. A conversation episode can be con-
structed directly from the output of the classifier (in Section
4) by locating sequence of quite states that demarcate the
boundaries of a conversation. The accuracy of the classi-
fier, therefore, directly impacts the accuracy of constructing
conversation episodes. We use two methods to improve the
accuracy of classification, which will also improve the accu-
racy of conversation characterization. We develop a Hidden
Markov Model (HMM) to leverage the fact that we usu-
ally transition among speaking and listening states during a
conversation, and a conversation event is preceded and suc-
ceeded by a sequence of quiet states. We then apply some
postprocessing rules to the output of the HMM.

5.1 HMM for Conversation Identification
An HMM is a Markov process comprising of a set of hid-

den states and a set of observables. Every state may emit
an observable with a known conditional probability distri-
bution called the emission probability. Transitions among
the hidden states are governed by a different set of proba-
bilities called transition probabilities. Upon executing on a
sequence of hidden states, an HMM produces a sequence of
observables as its output. While the output (i.e., the list of
observables) can be observed directly, the sequence of hid-
den states that were traversed in producing the observed
output is unknown; the problem is to determine the most
likely sequence of states that may have produced the ob-
served output. Viterbi decoding [4] is a dynamic program-
ming technique to find the maximum likelihood sequence of
hidden states given a set of observables, emission probability
distribution, and transition probabilities.

In our HMM model, there are three states — quiet-
state, speaking-state and listening-state and three observ-
ables — quiet-respiration, speaking-respiration and listening-
respiration. We introduce a new observation to indicate
missing data, which we call MissingObservation. Each state
emits observables depending on the emission probability.
The system can start from any of the three states. It may
be natural to assume the initial state to be the quiet-state,
because in most cases, the person will be quiet while being
fitted with the chest band. But, the data collection does
not start immediately after a person puts on the sensors. It
might start later when the mConverse system on the mo-
bile is activated, at which time the wearer may be engaged
in a conversation. Moreover, estimating such probabilities
is hard in practice, and therefore, we use an uninformative
prior, i.e., the initial probabilities for all the three states are
equal to 1/3.

Emission Probabilities. We have four observations
— speaking, listening, quiet, and missing data. If an observa-



Table 3: Comparison of classifiers for impure training and impure testing.

Classifier
All Features Selected Features

Accuracy(%) Kappa Precision Recall Accuracy(%) Kappa Precision Recall

J48 79.12 0.686 0.82 0.806 77.84 0.667 0.831 0.76

Adaboost(J48) 83.51 0.752 0.877 0.817 82.874 0.741 0.881 0.80

SVM 82.97 0.743 0.871 0.811 83.88 0.757 0.872 0.817

tion is available, we calculate the emission probabilities from
the confusion matrix we get after applying the classifier de-
scribed in Section 4.3 (see Table 4), and set the emission
probability of MissingObservation to 0 from all states. For
example, the quiet state can be detected with 81.71% accu-
racy by the classifier, and, therefore, the emission probabil-
ity from quiet-state to quiet-respiration is 0.82. If an obser-
vation is missing, then the emission probability of Missin-
gObservation from any state is set to 1, and the emission
probability of other 3 observables from any state is set to 0.
In other words, the Viterbi algorithm is guided to retain the
current state if an observation is missing.

Figure 10: HMM state description for conversation

episode identification. Three circles indicate three hid-

den states. Three rectangles indicate three observables.

All the emission probability are shown with the outgoing

arrow from state to the observables. Arrows from state

to state indicate transition probabilities.

Transition probabilities. We calculate transition prob-
abilities from the ground truth labeling of various conversa-
tions while varying the subjects and their contexts. From
the conversation data, we calculate the transition probabili-
ties by considering the ratio between the frequency of transi-
tions from an origin state to a target state, to the frequency
of the origin state in the data set. For example, we calculate
the transition probability from speaking to quiet state as the
ratio of the frequency of transitions from speaking to quiet
state, and the frequency of the speaking state; a majority of
speaking states may transition to listening state.

We train our HMM from carefully labeled (by an ob-
server) conversation data from 12 subjects in the natural
environment as described in Section 3.2. We calculate tran-

sition probabilities based on the labeled training data. We
compare the current state with the previous one and count
the window-wise transitions. In our case, we have three
states and nine transition probabilities. See Figure 10 for
the specific numbers we find from our data set for transition
and emission probabilities.

Table 4: Confusion matrix for Speaking, Listening
and Quiet classification after applying the Adaboost
classifier.

a b c ←− Classified as

0.8171 0.1200 0.0629 a=Quiet

0.0625 0.8068 0.1306 b=Listening

0.0461 0.0769 0.8769 c=Speaking

The 30-second windows of input respiration measure-
ments are classified as a sequence of speaking, listening and
quiet events from the classifier described in Section 4.3.
This sequence is then fed to our HMM which generates
smoothed sequence as its output of those three events. Al-
though Viterbi algorithm can be applied to the entire stream
at a time, if processing the respiration measurements offline,
in this work, we apply the HMM to segments of 10 win-
dows. We thus obtain revised assignment of each window
into speaking, listening, or quiet, including those that may
be missing. If a majority of windows in a block of 10 win-
dows are missing, then the missing windows are not assigned
any event label.

5.2 Post-Processing
We use two post processing steps to the output sequence

produced by HMM to further improve the classification ac-
curacy. First, if we find only some listening events inside a
long sequence of quiet, then we convert it to a quiet event.
Since these listening events are not backed up by speaking
events, they are unlikely to be part of a conversation.

Second, we apply outlier removal algorithm (described in
Section 4.1) to the total duration of speaking, listening and
quiet sequence. This procedure removes unusually long or
short sequence of speaking or listening events since in a typ-
ical conversation, speaking or listening can not be unusually
too long or too short.

5.3 Evaluation
As described earlier, a 30 second window may have a

mix of three possible events — speaking, listening and quiet.
This introduces impurity in ground truth labeling. We find
that training the classifier using data with impure ground
truth labeling and testing on impure data gives the best re-
sults among all the cases. We get 83.51% classifier accuracy
for three classes after applying the Adaboost classifier de-
scribed in Section 4.3 (see Table 3). After applying HMM



and postprocessing, it improves to 86.74%.

Table 5: Confusion matrix after postprocessing.

a b c ←− Classified as

0.9005 0.0706 0.0353 a = Quiet

0.1207 0.8275 0.0517 b = Listening

0.0238 0.0833 0.8929 c = Speaking

6. CONVERSATION BEHAVIOR IN REAL-
LIFE

We applied our model (developed from labeled train-
ing data) to the respiration data collected from 22 partici-
pants (11 men, 11 women) without ground truth, who wore
the sensors for awake periods (12-14 hours) on two non-
consecutive days in their natural environment1 to derive in-
teresting observations of conversation behavior in daily life.
We note that since the participants were all students at Uni-
versity of Minnesota, Duluth, these observations may be lim-
ited to the conversation behavior of students. However, since
several user studies involve students as subjects, these obser-
vations may inform scientific studies of social interactions,
social support, and conversation behavior among students.

6.1 Results
We computed the speaking, listening, and quiet states.

These were then used to compose conversation episodes and
period between successive conversations. Figure 11 shows
the average duration of conversation and average time be-
tween successive conversations for each subject, labeled by
gender to observe any gender bias. We notice that the aver-
age duration of conversation is limited to 5 minutes, while
average time between conversations is limited to 30 min-
utes. Note that these are averages and may not represent
individual episodes.

Table 1 summarizes mean values of various measures of
interest (e.g., conversation duration, speaking duration, fre-
quency of conversations, etc.). We observe that conversa-
tions are, on average, short and frequent, with an average
frequency of 2.96 conversations per hour. This is not un-
expected, as all participants were university students, and
the data included in the analysis was collected during week-
days, between 8am and 10pm. During this time, students
talk mostly to their peers, between classes, for example, to
discuss material, or compare homework results. We also ob-
serve that listening segments are, on average, longer than
speaking segments. In a two party conversation, we expect
each person to speak for about half of the time (if we aver-
age over all conversations and participants). If we also con-
sider group conversations, then listening segments should be
longer than speaking segments. Thus, on average, we expect
longer listening times than speaking. Notice also that, due
to the way in which we discretize time, we cannot measure
times shorter than 30 seconds. We leave for future work, to
find ways of measuring shorter intervals.

We notice that the average duration of conversations per
hour is about 25.6*60=18.6 minutes. This is in contrast with

1For details of the study design and protocol, we refer the
reader to [20].

Figure 11: Average (over both days) of duration
of conversation and between conversation (quiet)
times, for each participant. Male participants are
represented with circles, females with triangles. The
average times for males and females are shown with
a large circle and triangle, respectively. The total
average is shown as a diamond.

Figure 12: Average number of conversations of a
given duration, per person, per day.

the results obtained in [2] in which the average time the en-
ergy on the microphone was above a given threshold was
found to be close to 30 minutes per hour. This difference
might be explained by the fact that the population included
in the study in [2] consisted of students, faculty, and staff
members from the MIT Media Lab, the duration of obser-
vation was mostly work hour (i.e., 10-5), and students were
members of research groups, while the population consid-
ered in our study consisted of only undergraduate students,
and covered their entire awake hours.

Figure 12 shows the frequency of conversation of vari-
ous durations across all 22 participants. We observe that
conversations of shorter durations are more frequent, with
length 2 to 4 minutes being most dominant.

7. CONCLUSION
In this paper, we presented mConverse, a respiration

event classification system specifically designed for resource
limited mobile phones. In contrast to traditional audio con-
text recognition systems that are offline, mConverse per-
forms online classification at a lower computational cost but
yields results that are comparable to offline systems. We in-



troduce conversation episode identification from respiration
signal of a human subject by classifying them into speak-
ing, listening and quiet events. For these classification, we
propose several new time domain features from respiration
which are different from the traditional features and light-
weight from computational requirement. Using mConverse
in real-life can help enhance the scientific studies of social
interactions and help individuals reflect upon and improve
their social interactions. Its usage together with processing
of audio data captured on the microphone can help further
characterize the content of conversation (e.g., how frequently
the wearer discusses health issues in chronic care conditions).
Capture of audio data in the field can also help further val-
idate the model proposed in this work.

This work opens up several new opportunities for fu-
ture work. For example, automatic detection of other daily
behaviors of interest such as laughing, singing, eating, drink-
ing, etc., from respiration measurements on the mobile phone
can be investigated.
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