Abstract

We show that randomized communication complexity can be superlogarithmic in the partition number of the associated communication matrix, and we obtain near-optimal randomized lower bounds for the Clique vs. Independent Set problem. These results strengthen the deterministic lower bounds obtained in prior work (Göös, Pitassi, and Watson, FOCS 2015).

1 Introduction

A prior work [GPW15] exhibited a boolean function \(F : \mathcal{X} \times \mathcal{Y} \to \{0, 1\} \) whose deterministic communication complexity is superlogarithmic in the partition number

\[
\chi(F) := \chi_0(F) + \chi_1(F)
\]

where \(\chi_i(F) \) is the least number of rectangles (sets of the form \(A \times B \) where \(A \subseteq \mathcal{X}, B \subseteq \mathcal{Y} \)) needed to partition the set \(F^{-1}(i) \). In this follow-up work, we upgrade the lower-bound results from [GPW15] to hold against randomized protocols—here the notation \(\tilde{\Omega}(m) \) hides factors polylogarithmic in \(m \).

Theorem 1. There is an \(F \) with randomized communication complexity \(\tilde{\Omega}(\log^{1.5} \chi(F)) \).

Theorem 2. There is an \(F \) with randomized communication complexity \(\tilde{\Omega}(\log^2 \chi_1(F)) \).

Discussion of Theorem 1. Every \(F \) has deterministic communication complexity at least \(\log \chi(F) \) and at most \(O(\log^2 \chi(F)) \), where the latter upper bound is a classical result of [AUY83]. Our Theorem 1 shows that the upper bound cannot be improved much even if we allow randomized protocols. Another implication of Theorem 1 is that none of the known rectangle-based lower-bound methods, as catalogued by Jain and Klauck [JK10], can capture (up to constant factors) the randomized communication complexity of total functions. In particular, Theorem 1 gives a power 1.5 gap between randomized communication complexity and the partition bound [JK10, JLV14]; previously, no gap was known for total functions. We also note that a query complexity analogue of Theorem 1 (with an exponent of \(\log_3(3.2) \approx 1.0587 \) instead of 1.5) was recently obtained by Kothari, Racicot-Desloges, and Santha [KRS15].

†Work done while at IBM Research Almaden.
Discussion of Theorem 2. The relationship between $\chi_1(F)$ and the communication complexity of F can be equivalently formulated in the language of the Clique vs. Independent Set game, played on a graph derived from F (Alice holds a clique, Bob holds an independent set: do they intersect?). See [Yan91, §4] or [Juk12, §4.4] for the equivalence. Yannakakis [Yan91] (extending [AYU83]) proved that every F has deterministic communication complexity at most $O(\log^2 \chi_1(F))$. Our Theorem 2 shows that this upper bound is essentially tight even if we allow randomized protocols, and it implies that there is a graph on n nodes for which Clique vs. Independent Set requires $\Omega(\log^2 n)$ randomized communication. (The deterministic upper bound $O(\log^2 n)$ holds for all graphs.) A related work [Göö15] exhibited an F with conondeterministic communication complexity $\Omega(\log^{1.128} \chi_1(F))$; this result remains incomparable with Theorem 2.

Techniques. The basic strategy in [GPW15] for obtaining the deterministic versions of Theorems 1–2 was to first obtain analogous gaps in the easier-to-understand world of query complexity, then “lift” the results to communication complexity using a so-called simulation lemma. For getting randomized lower bounds, two obstacles immediately present themselves: (i) The functions studied in [GPW15] are too easy for randomized protocols (as shown by [MS15]). (ii) There is no known simulation lemma for the bounded-error randomized setting.

To handle obstacle (i), we modify the functions from [GPW15] in a way that preserves their low partition numbers while eliminating the structure that was exploitable by randomized protocols. To handle obstacle (ii) for Theorem 2, we actually prove a lower bound for a model that is stronger than the standard randomized model, but for which there is a known simulation lemma [GLM+15]. This idea alone does not handle obstacle (ii) for Theorem 1, though. For that, we start by giving a proof of the query complexity analogue of Theorem 1 (which, incidentally, strengthens [KRS15]), then develop a way to mimic that argument using communication complexity, by going through information complexity (exploiting machinery from [KLL+12] and [BW15a]). In the process, this yields a corollary that may be of independent interest: information complexity under arbitrary distributions is essentially equivalent to information complexity under distributions that are only over 1-inputs (or only over 0-inputs).

2 Complexity Measures

We study the following communication complexity models/measures; see Figure 1. For any complexity measure C we write $\text{co}C(F) := C(\neg F)$ and $2C(F) := \max\{C(F), \text{co}C(F)\}$ for short.

- P^{cc}: The deterministic communication complexity of F is denoted $\text{P}^{\text{cc}}(F)$.
- BPP^{cc}: The randomized communication complexity of F is denoted $\text{BPP}^{\text{cc}}(F)$.
- UP^{cc}: Recall (e.g., [KN97, Juk12]) that a cost-c nondeterministic protocol for F corresponds to a covering (allowing overlaps) of $F^{-1}(1)$ with 2^c rectangles. A nondeterministic protocol is unambiguous if on every 1-input there is a unique accepting computation; combinatorially, this means we have a disjoint covering (partition) of $F^{-1}(1)$. We define $\text{UP}^{\text{cc}}(F) := \lceil \log \chi_1(F) \rceil$. Thus $\text{coUP}^{\text{cc}}(F) = \lceil \log \chi_0(F) \rceil$, and $2\text{UP}^{\text{cc}}(F) \in \lceil \log \chi(F) \rceil \pm 1$.
- WAPP^{cc}: Abstractly speaking, a WAPP computation (Weak Almost-Wide PP, introduced in [BGM06]) is a randomized computation that accepts 1-inputs with probability in $[(1 - \epsilon)\alpha, \alpha]$, and 0-inputs with probability in $[0, \epsilon\alpha]$, where $\epsilon < 1/2$ is an error parameter and $\alpha = \alpha(n) > 0$ is arbitrary.
Instantiating this for protocols, we define \(\text{WAPP}^{cc}_\epsilon(F) \) as the least “cost” of a randomized (public-coin) protocol \(\Pi \) that computes \(F \) in the above sense; the “cost” of a protocol \(\Pi \) with parameter \(\alpha \) is defined as the usual communication cost (number of bits communicated) plus \(\log(1/\alpha) \). In this definition, we may assume w.l.o.g. that \(\Pi \) is zero-communication [KLL+12]: \(\Pi \) is simply a probability distribution over rectangles \(R \), and \(\Pi \) accepts an input \((x, y) \) iff \((x, y) \in R \) for the randomly chosen \(R \). Such a protocol \(\Pi \) exchanges only 2 bits to check the condition \((x, y) \in R \), and the rest of the cost is coming from having a tiny \(\alpha \).

We note that \(\text{WAPP}^{cc} \) corresponds to the (one-sided) smooth rectangle bound of [JK10], which is known to be equivalent to approximate nonnegative rank [KMSY14]. A consequence of this equivalence is that \(\text{WAPP}^{cc} \) could alternatively be defined without charging anything for \(\alpha > 0 \), as long as we restrict our protocols to be private-coin; see also [GLM+15, Theorem 9]. Also, \(2\text{WAPP}^{cc} \) is equivalent to the relaxed partition bound of [KLL+12] (we elaborate on this in Section 5.2). We remark that \(\text{WAPP}^{cc} \) is not amenable to efficient amplification of the error parameter; there can be an exponential gap between \(\text{WAPP}^{cc}_\epsilon \) and \(\text{WAPP}^{cc}_\delta \) for different constants \(\epsilon \) and \(\delta \), at least for partial functions [GLM+15, Theorem 6].

Figure 1: Models of computation that can be instantiated for both communication and query complexity. Here \(A \rightarrow B \) means that model \(B \) can simulate model \(A \) without any overhead.

For a boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) we consider the following decision tree models/measures:

- \(\text{P}^{dt} \): The deterministic decision tree complexity of \(f \) is denoted \(\text{P}^{dt}(f) \).
- \(\text{BPP}^{dt} \): The randomized decision tree complexity of \(f \) is denoted \(\text{BPP}^{dt}(f) \).
- \(\text{UP}^{dt} \): A nondeterministic decision tree is a DNF formula. We think of the conjunctions in the DNF formula as certificates—partial assignments to inputs that force the function to be 1. The cost is the maximum number of input bits read by a certificate. A nondeterministic decision tree is unambiguous if on every 1-input there is a unique accepting certificate. We define \(\text{UP}^{dt}(f) \) as the least cost of an unambiguous decision tree for \(f \). Other works that have studied unambiguous decision trees include [Sav02, Bel06, G"{o}"{o}15, GPW15, KRS15].
- \(\text{WAPP}^{dt} \): We define \(\text{WAPP}^{dt}_\epsilon(f) \) as the least height of a randomized decision tree that accepts 1-inputs with probability in \((1-\epsilon)\alpha, \alpha]\), and 0-inputs with probability in \([0, \epsilon \alpha]\), where \(\alpha = \alpha(n) > 0 \) is arbitrary. (Note that only the number of queries matters; we do not charge for \(\alpha \) being small.) Like the communication version, this measure is not amenable to efficient amplification of the error parameter [GLM+15].

The analogue of a \(\text{WAPP}^{cc} \) protocol being w.l.o.g. a distribution over rectangles is that a \(\text{WAPP}^{dt} \) decision tree is w.l.o.g. a distribution over conjunctions. This implies that we
may characterize \(\text{WAPP}^\text{dt}_\epsilon(f) \) using \emph{conical juntas}: A \emph{conical junta} \(h \) is a nonnegative linear combination of conjunctions. That is, \(h = \sum w_C C \) where the sum ranges over conjunctions \(C: \{0,1\}^n \rightarrow \{0,1\} \) and \(w_C \geq 0 \) for all \(C \). Then \(\text{WAPP}^\text{dt}_\epsilon(f) \) is the least degree (maximum width of a conjunction with positive weight in \(h \)) of a conical junta \(h \) that \(\epsilon \)-approximates \(f \) in the sense that \(h(z) \in [1 - \epsilon, 1] \) for all \(z \in f^{-1}(1) \), and \(h(z) \in [0, \epsilon) \) for all \(z \in f^{-1}(0) \). Other works have studied conical juntas under such names as the (one-sided) \emph{partition bound for query complexity} [JK10] and \emph{query complexity in expectation} [KLdW15].

3 Overview

In this section we give an outline for obtaining our main results, Theorems 1–2. For complexity models/measures \(C \) and \(C' \), we informally say “\(C \)-vs-\(C' \) gap” to mean the existence of a function whose \(C \) complexity is significantly higher than its \(C' \) complexity. Using the notation defined in Section 2, we can rephrase our main results as follows.

Theorem 1 (BPP^cc-vs-2UP^cc). There is an \(F \) such that \(\text{BPP}^\text{cc}(F) \geq \tilde{\Omega}(\text{2UP}^\text{cc}(F)^{1.5}) \).

Theorem 2 (BPP^cc-vs-UP^cc). There is an \(F \) such that \(\text{BPP}^\text{cc}(F) \geq \tilde{\Omega}(\text{UP}^\text{cc}(F)^2) \).

(§3.1) **Tribes-List:** Our starting point is to define \emph{Tribes-List}, a variant of a function introduced in [GPW15]. Its purpose is to witness a BPP-vs-UP gap for query complexity.

(§3.2) **Composition:** Next, we modify Tribes-List using two types of function composition, which we call \emph{lifting} and \emph{AND-composition}, to obtain candidate functions for BPP-vs-2UP gaps in both query and communication complexity.

(§3.3) **Overview of proofs:** With the candidate functions defined, we outline our strategy to prove the desired communication lower bounds.

3.1 Tribes-List

The \emph{Tribes-List} function \(\text{TL}: \{0,1\}^n \rightarrow \{0,1\} \) is defined on \(n := \Theta(k^3 \log k) \) bits where \(k \) is a parameter. We think of the input as a \(k \times k \) matrix \(M \) with entries \(M_{ij} \) taking values from the alphabet \(\Sigma := \{0,1\} \times ([k]^{k-1} \cup \{\perp\}) \). Here each entry is encoded with \(\Theta(k \log k) \) bits, and we assume that the encoding of \(M_{ij} = (m_{ij}, p_{ij}) \in \Sigma \) is such that a single bit is used to encode the value \(m_{ij} \in \{0,1\} \) and another bit is used to encode whether or not \(p_{ij} = \perp \). If \(p_{ij} \neq \perp \), then we can learn its exact value in \([k]^{k-1}\) by querying all the \(\Theta(k \log k) \) bits.

Informally, we have \(\text{TL}(M) = 1 \) iff \(M \) has a unique all-(1, *) column (here * is a wildcard) that also contains an entry with \(k - 1 \) pointers to entries of the form (0, *) in all other columns. More formally, we define \(\text{TL} \) in Figure 2 by describing an unambiguous decision tree of cost \(\Theta(k \log k) \) computing it.

3.2 Composition

Given a base function witnessing some complexity gap, we will establish a different but related complexity gap by transforming the function into a more complex one via one (or both) of the following operations involving function composition: \emph{lifting} and \emph{AND-composition}. Lifting is used to go from a query complexity gap to an analogous communication complexity gap. AND-composition
Unambiguous decision tree for TL:

Nondeterministically guess a column index \(j \in [k] \). Consider the entries \(M_{ij} = (m_{ij}, p_{ij}) \) for \(i \in [k] \): check that \(m_{ij} = 1 \) for all \(i \) and that \(p_{ij} \neq \perp \) for at least one \(i \) (this is \(\leq 2k \) queries). Let \(i \) be the first row index for which \(p_{ij} \neq \perp \) and read the full value of \(p_{ij} \) (this is \(\Theta(k \log k) \) queries). Interpret \(p_{ij} \in [k]\backslash\{j\} \) as a list of pointers, describing a row index for all columns other than \(j \). For each of these \(k-1 \) pointed-to entries \(M_{ij'} \), check that \(m_{ij'} = 0 \) (this is \(k-1 \) queries).

\[
\begin{array}{c|c|c}
1, \perp & 0, * & 0, * \\
\hline
0, * & 1, \perp & 0, * \\
\hline
1, \perp & 1, P_{ij} & 1, * \\
\hline
0, * & 0, * & 0, * \\
\end{array}
\]

Figure 2: The unambiguous decision tree that defines the Tribes-List function.

is used to go from a gap with a UP upper bound to a gap with a 2UP upper bound. To show that an operation indeed converts one gap to another gap, we need two types of results: an observation showing how the relevant upper bounds behave under the operation, and a more difficult lemma showing how the relevant lower bounds behave under the operation.

Lifting. Let \(g: \{0, 1\}^b \times \{0, 1\}^b \rightarrow \{0, 1\} \) be a fixed two-party function (called the gadget). We can lift \(f: \{0, 1\}^n \rightarrow \{0, 1\} \) via the gadget \(g \) to obtain a two-party composed function \(f \circ g^n: (\{0, 1\}^b)^n \times (\{0, 1\}^b)^n \rightarrow \{0, 1\} \) where Alice is given \(x = (x_1, \ldots, x_n) \) and Bob is given \(y = (y_1, \ldots, y_n) \) (with each \(x_i, y_i \in \{0, 1\}^b \) and the goal is to compute \((f \circ g^n)(x, y) := f(g(x_1, y_1), \ldots, g(x_n, y_n)) \).

A decision tree for \(f \) generally yields a corresponding type of communication protocol for \(f \circ g^n \): whenever the decision tree queries the \(i \)-th bit, Alice and Bob communicate \(b+1 \) bits to evaluate the corresponding bit \(g(x_i, y_i) \). By counting conjunctions, it can be verified that such a connection holds for the 2UP and UP models as well:

Observation 3. For all \(f: \{0, 1\}^n \rightarrow \{0, 1\} \), \(g: \{0, 1\}^b \times \{0, 1\}^b \rightarrow \{0, 1\} \), and \(C \in \{2UP, UP\} \), we have \(C^{cc}(f \circ g^n) \leq C^{dt}(f) \cdot O(b + \log n) \).

For any model \(C \), a result in the converse direction (giving a black-box method of converting a communication protocol for \(f \circ g^n \) into a comparably efficient decision tree for \(f \)) is highly nontrivial and is called a simulation lemma. In this work, we use a simulation lemma for \(C = WAPP \):

Lemma 4 (Simulation for WAPP [GLM+15]). For all \(f: \{0, 1\}^n \rightarrow \{0, 1\} \) and constants \(0 < \epsilon < \delta < 1/2 \), we have \(WAPP^{cc}_\delta(f) \leq O(WAPP^{cc}_\epsilon(f \circ g^n)/\log n) \) where \(g: \{0, 1\}^b \times \{0, 1\}^b \rightarrow \{0, 1\} \) is the inner-product gadget defined as follows: \(b = b(n) := 100 \log n \), and \(g(x_i, y_i) := \langle x_i, y_i \rangle \mod 2 \).

AND-composition. Given \(f: \{0, 1\}^n \rightarrow \{0, 1\} \) we can compose it with the \(k \)-bit AND function to obtain \(\text{AND} \circ f^k: \{\{0, 1\}^n\}^k \rightarrow \{0, 1\} \) defined by \((\text{AND} \circ f^k)(z_1, \ldots, z_k) = 1 \) iff \(f(z_i) = 1 \) for all \(i \). Similarly, given \(F: \mathcal{X} \times \mathcal{Y} \rightarrow \{0, 1\} \) we can obtain \(\text{AND} \circ F^k: \mathcal{X}^k \times \mathcal{Y}^k \rightarrow \{0, 1\} \) defined by \((\text{AND} \circ F^k)(x, y) = 1 \) iff \(F(x_i, y_i) = 1 \) for all \(i \).

AND-composition converts a UP upper bound into a 2UP upper bound [GPW15]:
Observation 5. For all \(f \) and \(k \), we have \(2\text{UP}^\text{dt}(\text{AND} \circ f^k) \leq k \cdot \text{UP}^\text{dt}(f) + O(\text{UP}^\text{dt}(f)^2) \). Similarly, for all \(F \) and \(k \), we have \(2\text{UP}^\text{cc}(\text{AND} \circ F^k) \leq k \cdot \text{UP}^\text{cc}(F) + O(\text{UP}^\text{cc}(F)^2 + \log k) \).

The two parts of Observation 5 are analogous, so we describe the idea only in terms of the query complexity part. Since \(\text{coUP}^\text{dt}(f) \leq \text{P}^\text{dt}(f) \leq O(\text{UP}^\text{dt}(f)^2) \), it suffices to have \(\text{coUP}^\text{dt}(f) \) as the second term on the right side. The idea is to let a 1-certificate for \(\text{AND} \circ f^k \) be comprised of 1-certificates for each of the \(k \) copies of \(f \), and a 0-certificate for \(\text{AND} \circ f^k \) be comprised of a 0-certificate for the first copy of \(f \) that evaluates to 0, together with 1-certificates for each of the preceding copies of \(f \).

On the other hand, the following lemma (proven in Section 5.1) shows that randomized query complexity goes up by a factor of \(k \) under \(\text{AND} \)-composition.

Lemma 6. For all \(f \) and \(k \), we have \(\text{BPP}^\text{dt}(f) \leq O(\text{BPP}^\text{dt}(\text{AND} \circ f^k)/k) \).

We note that Lemma 6 qualitatively strengthens the tight direct sum result for randomized query complexity in [JKS10] since computing the outputs of all \(k \) copies of \(f \) is at least as hard as computing the \(\text{AND} \) of the outputs. Similarly, if we could prove an analogue of Lemma 6 for communication complexity, it would qualitatively strengthen the notoriously-open tight direct sum conjecture for randomized communication complexity.

3.3 Overview of proofs

The following diagram shows how we construct the functions used to witness our gaps. Starting with some \(f \), we can lift it to obtain \(F \), or we can apply \(\text{AND} \)-composition to obtain \(f^* \). We can obtain \(F^* \) by either lifting \(f^* \) or equivalently applying \(\text{AND} \)-composition to \(F \).

![Diagram](attachment://diagram.png)

Proof of Theorem 2. We start by discussing the proof of Theorem 2 as it will be used in the proof of Theorem 1. We actually prove the following stronger version of Theorem 2 that gives a lower bound even against \(\text{coWAPP}^\text{cc}(F) \):

Theorem 2 (\(\text{coWAPP}^\text{cc}-\text{vs-UP}^\text{cc} \)). There is an \(F \) such that \(\text{coWAPP}^\text{cc}_0(F) \geq \tilde{\Omega}(\text{UP}^\text{cc}(F)^2) \).

Our proof follows the same outline as in [GPW15] and only requires us to lift the following analogous result for query complexity (proved in Section 4):

Lemma 7 (\(\text{coWAPP}^\text{dt}-\text{vs-UP}^\text{dt} \)). \(\text{coWAPP}^\text{dt}_{0.06}(\text{TL}) \geq \tilde{\Omega}(\text{UP}^\text{dt}(\text{TL})^2) \).

To derive Theorem 2*, set \(f := \text{TL} \) and \(F := f \circ g^n \), where \(g \) is the gadget from Lemma 4 and \(n \) is the input length of \(f \). Recall that \(\text{UP}^\text{dt}(f) \geq n^{\Omega(1)} \). Thus by Observation 3, \(\text{UP}^\text{cc}(F) \leq \)
Proof of Theorem 1. An “obvious” strategy for Theorem 1 would be again to first prove the analogous query complexity result and then lift it to communication complexity. (This is the outline used for the analogous result in [GPW15].) In other words, we would follow the lower-right path in the above diagram:

Obvious strategy

(a) Start with f witnessing a BPP^{dt}-vs-UP^{dt} gap.
(b) Obtain f^* witnessing a BPP^{dt}-vs-2UP^{dt} gap by applying AND-composition to f.
(c) Obtain F^* witnessing a BPP^{cc}-vs-2UP^{cc} gap by lifting f^*.

We have the tools to complete steps (a) and (b):

Lemma 8 (BPP^{dt}-vs-2UP^{dt}). There is an f such that $\text{BPP}^{\text{dt}}(f) \geq \tilde{\Omega}(2\text{UP}^{\text{dt}}(f)^{1.5})$.

Proof. This is witnessed by $f^* := \text{AND} \circ \text{TL}^k$ where $k := \text{UP}^{\text{dt}}(\text{TL})$. By Observation 5, $2\text{UP}^{\text{dt}}(f^*) \leq O(k^2)$, and by Lemmas 6–7, $\text{BPP}^{\text{dt}}(f^*) \geq \Omega(k \cdot \text{BPP}^{\text{dt}}(\text{TL})) \geq \Omega(k \cdot \text{coWAPP}^{\text{dt}}_{0.05}(\text{TL})) \geq \tilde{\Omega}(k^3)$.

Unfortunately, we do not know how to carry out step (c), because we currently lack a simulation lemma for BPP. (We believe that such a lemma is true, and it is an interesting open problem to prove this!) We get around this obstacle by reversing the order of steps (b) and (c), that is, we instead follow the upper-left path in the diagram:

Modified strategy

(a’) Start with f witnessing a coWAPP$^{\text{dt}}$-vs-UP^{dt} gap.
(b’) Obtain F witnessing a coWAPP$^{\text{cc}}$-vs-UP^{cc} gap by lifting f.
(c’) Obtain F^* witnessing a BPP^{cc}-vs-2UP^{cc} gap by applying AND-composition to F.

Steps (a’) and (b’) are just Theorem 2*. For step (c’) it would suffice to have an analogue of Lemma 6 for communication complexity. This is open, but fortunately we have some wiggle room since it suffices to have coWAPPe instead of BPP on the left side of Lemma 6. For this, we can prove a communication analogue (indeed, with 2WAPPe instead of coWAPPe):

Lemma 9. For all F, k, and constants $0 < \epsilon < 1/2$, we have

$$2\text{WAPP}^{\text{cc}}_\epsilon(F) \leq O(\text{BPP}^{\text{cc}}(\text{AND} \circ F^k)/k + \log \text{BPP}^{\text{cc}}(\text{AND} \circ F^k)).$$

To derive Theorem 1, let F be the function in Theorem 2*, and let $F^* := \text{AND} \circ F^k$ where $k := \text{UP}^{\text{cc}}(F)$. Then F^* witnesses Theorem 1: By Observation 5, $2\text{UP}^{\text{cc}}(F^*) \leq O(k^2)$, and by Lemma 9, $\text{BPP}^{\text{cc}}(F^*) \geq \Omega(k \cdot (2\text{WAPP}^{\text{cc}}_\epsilon(F) - O(\log k))) \geq \Omega(k \cdot (\text{coWAPP}^{\text{cc}}_{0.04}(F) - O(\log k))) \geq \tilde{\Omega}(k^3)$.

Proof of Lemma 9. We start with the intuition for the proof of Lemma 6, which is a warmup for Lemma 9. For brevity let $f^* := \text{AND} \circ f^k$. Given an input z for f, the basic idea is to plant z into a random coordinate of $f^*(z_1, \ldots, z_k)$, and plant random 1-inputs into the other coordinates, and then
run the randomized decision tree for \(f^* \). If \(q \) is the query complexity of \(f^* \), the expected number of bits of \(z \) that are queried (over a random 1-input) will be at most \(q/k \). Our new randomized decision tree will simulate this but abort after \(8q/k \) queries to \(z \) have been made. If an answer is returned, we output the same value for \(f(z) \), and if no answer is returned within this many queries, then we output 0. A simple analysis shows that we succeed with high probability in the average-case (which is equivalent to worst-case by the minimax theorem).

To prove Lemma 9, we would like to mimic this argument in the communication world, using the fact that internal information complexity is sandwiched between \(\text{BPP}^{cc} \) and \(2\text{WAPP}^{cc} \) \cite{KLL+12} and satisfies a sort of AND-composition analogous to Lemma 6 using well-known properties (by planting the input into a random coordinate, and planting random 1-inputs into the other coordinates). However there is a significant barrier to this idea “just working”: the AND-composition property (direct sum lemma) requires a distribution over 1-inputs of \(F \) (one-sided), while the relation to \(2\text{WAPP}^{cc} \) requires an arbitrary distribution over inputs to \(F \) (two-sided). To bridge this divide, we prove a new property of information complexity: the one-sided version is essentially equivalent to the two-sided version. A key ingredient in showing the latter is the “information odometer” of \cite{BW15a}, which allows us to keep track of the amount of information that has been revealed, and abort the protocol once we have reached our limit, and argue that we can carry this out without revealing too much extra information. We note that this one-vs-two sided information complexity lemma is the only component of the proof of Theorem 1 that distinguishes between arbitrary rectangle partitions (\(2\text{UP}^{cc} \)) and rectangle partitions induced by protocols (\(\text{P}^{cc} \)).

Organization. The only ingredients that remain to be proved are Lemma 7 (which we prove in Section 4) and Lemma 6 and Lemma 9 (both of which we prove in Section 5).

4 Decision Tree Lower Bound

In this section we prove Lemma 7, restated here for convenience.

Lemma 7 (\(\text{coWAPP}^{dt} \)-vs-\(\text{UP}^{dt} \)). \(\text{coWAPP}^{dt}_{0.05}(\text{TL}) \geq \tilde{\Omega}(\text{UP}^{dt}(\text{TL})^2) \).

Recall that \(\text{UP}^{dt}(\text{TL}) \leq O(k \log k) \) by definition. To prove Lemma 7 we show that there is no \(o(k^2) \)-degree conical junta \(h = \sum wC \) that outputs values in \([0.95, 1]\) on inputs from \(\text{TL}^{-1}(0) \) and outputs values in \([0, 0.05]\) on inputs from \(\text{TL}^{-1}(1) \). A similar lower bound for the plain \(k \times k \) Tribes function was proved by \cite[Theorem 4]{JK10} using LP duality; our argument is more direct.

To illustrate the basic style of argument, we start gently by proving an \(\Omega(n) \) conical junta degree bound for approximating the NAND function—this lower bound will be used in the proof of Lemma 7, too.

4.1 Warm-up: Lower bound for NAND

Suppose for contradiction that \(h = \sum wC \) is a conical junta of degree \(o(n) \) computing the \(n \)-bit NAND function to within error \(1/5 \). We will argue that if \(h \) is correct on inputs of Hamming weights \(n \) and \(n - 1 \), then it must mess up on inputs of Hamming weight \(n - 2 \): \(h \) will output a value larger than 1, which is a contradiction. We now give the details.

To begin, we have \(h(\vec{1}) \leq 1/5 \) by the correctness of \(h \) (here \(\vec{1} \) is the all-1 input). This means that the total weight (sum of \(wC \)'s) associated with conjunctions that read only 1's is at most 1/5.
Let $X \in \text{NAND}^{-1}(1)$ be a uniformly random string of Hamming weight $n - 1$. By correctness,
\[
\mathbb{E}[h(X)] = \sum_{C \in \mathcal{C}} w_C \mathbb{E}[C(X)] = \sum_{C \in \mathcal{C}} w_C \mathbb{P}[C(X) = 1] \geq \frac{4}{5}.
\]

In the above sum, there are two types of conjunctions that contribute with a positive acceptance probability: those that read only 1’s, and those that read a single 0 and some $o(n)$ many 1’s. Since the first type has total weight $\leq 1/5$ we must have $\sum_{C \in \mathcal{C}} w_C \mathbb{P}[C(X) = 1] \geq 3/5$ where \mathcal{C} is the set of conjunctions of the second type. Consider the acceptance probability of any $C \in \mathcal{C}$ on a uniformly random string $Y \in \text{NAND}^{-1}(1)$ of Hamming weight $n - 2$: if the width of C is d, then $\mathbb{P}[C(Y) = 1] = (n - d)/\binom{n}{2}$, which is $(2 - o(1))/n$ for $d = o(n)$. Since $\mathbb{P}[C(X) = 1] = 1/n$ we conclude that
\[
\mathbb{P}[C(Y) = 1] = (2 - o(1)) \cdot \mathbb{P}[C(X) = 1].
\] (1)

We now arrive at the desired contradiction:
\[
\mathbb{E}[h(Y)] \geq \sum_{C \in \mathcal{C}} w_C \mathbb{P}[C(Y) = 1] = (2 - o(1)) \sum_{C \in \mathcal{C}} w_C \mathbb{P}[C(X) = 1] \geq (2 - o(1)) \cdot 3/5 > 1.
\]

4.2 Proof of Lemma 7

We prove a lower bound for TL: $\Sigma^{k \times k} \rightarrow \{0, 1\}$ by arguing that $\Omega(k^2)$ entries must be touched: We only charge one query for reading a whole matrix entry in $\Sigma = \{0, 1\} \times (\{k\}^{k-1} \cup \{\bot\})$. That is, we assume each conjunction either reads nothing from an entry or reads one fully. The width of a conjunction is then understood as the number of entries it reads.

We study three types of random inputs to TL:

- $X \in \text{TL}^{-1}(0)$ is defined so that the columns in X are independent, and in each column all entries are $(1, \bot)$ except we plant a single $(0, \bot)$ entry in a random row index. Hence there are altogether k many $(0, \bot)$ entries in X.
- $Y \in \text{TL}^{-1}(0)$ is defined like X except we replace a random $(1, \bot)$ entry in X with a $(0, \bot)$ entry. Hence there are altogether $k + 1$ many $(0, \bot)$ entries in Y, two of them sharing a column.
- $Z \in \text{TL}^{-1}(1)$ is defined like X except we replace a random $(0, \bot)$ entry (k different choices) in X with a $(1, p)$ entry, where p is a list of pointers to all other positions of $(0, \bot)$ entries (making Z indeed a 1-input).

The crux of the argument is contained in the following claim.

Claim 10. For every conjunction C of width $o(k^2)$, either $\mathbb{P}[C(Y) = 1] \geq 1.4 \cdot \mathbb{P}[C(X) = 1]$ or $\mathbb{P}[C(Z) = 1] \geq 0.5 \cdot \mathbb{P}[C(X) = 1]$.

Before proving Claim 10, let us see how to finish the proof of Lemma 7 assuming it. We have a similar claim for conical juntas:

Claim 11. For every conical junta h of degree $o(k^2)$, either $\mathbb{E}[h(Y)] \geq 1.1 \cdot \mathbb{E}[h(X)]$ or $\mathbb{E}[h(Z)] \geq 0.1 \cdot \mathbb{E}[h(X)]$.

Proof. Let $h = \sum w_C C$. By linearity, $\mathbb{E}[h(X)] = \sum w_C \mathbb{P}[C(X) = 1]$ and similarly for Y and Z. By Claim 10, let \mathcal{C} be a set of conjunctions such that for each $C \in \mathcal{C}$, $\mathbb{P}[C(Y) = 1] \geq 1.4 \cdot \mathbb{P}[C(X) = 1]$,
and for each $C \not\in \mathcal{C}$, $\Pr[C(Z) = 1] \geq 0.5 \cdot \Pr[C(X) = 1]$. Either $\sum_{C \in \mathcal{C}} w_C \Pr[C(X) = 1] \geq 0.8 \cdot \mathbb{E}[h(X)]$, in which case

$$\mathbb{E}[h(Y)] \geq \sum_{C \in \mathcal{C}} w_C \Pr[C(Y) = 1] \geq \sum_{C \in \mathcal{C}} w_C \cdot 1.4 \cdot \Pr[C(X) = 1] \geq 1.4 \cdot 0.8 \cdot \mathbb{E}[h(X)],$$

or $\sum_{C \in \mathcal{C}} w_C \Pr[C(X) = 1] \geq 0.2 \cdot \mathbb{E}[h(X)]$, in which case

$$\mathbb{E}[h(Z)] \geq \sum_{C \in \mathcal{C}} w_C \Pr[C(Z) = 1] \geq \sum_{C \in \mathcal{C}} w_C \cdot 0.5 \cdot \Pr[C(X) = 1] \geq 0.5 \cdot 0.2 \cdot \mathbb{E}[h(X)].$$

Now to prove Lemma 7, suppose for contradiction that h is a conical junta of degree $o(k^2)$ computing \negTL to within error 0.05. That is, the value of h is in $[0.95, 1]$ on 0-inputs of TL and in $[0, 0.05]$ on 1-inputs of TL. In particular, $\mathbb{E}[h(X)] \in [0.95, 1]$, $\mathbb{E}[h(Y)] \in [0.95, 1]$, and $\mathbb{E}[h(Z)] \in [0, 0.05]$. This directly contradicts Claim 11.

Proof of Claim 10. We may assume that C accepts X with positive probability for otherwise the claim is trivial. Hence C reads at most a single $(0, \perp)$ entry from each column. We analyze two cases depending on how many $(0, \perp)$ entries C reads in total.

The first (easy) case is when C reads less than $k/2$ many $(0, \perp)$ entries. Here C cannot detect us replacing a random $(0, \perp)$ entry with a $(1, p)$ entry with probability better than $1/2$. That is, $\Pr[C(Z) = 1] \geq 0.5 \cdot \Pr[C(X) = 1]$.

The second case is when C reads at least $k/2$ many $(0, \perp)$ entries. Because C has width $o(k^2)$ there is some $S_1 \subseteq [k]$ of size $|S_1| \geq (1 - o(1))k$ such that C reads $o(k)$ entries from each of the columns indexed by S_1. (More precisely, if C has width δk^2, then there is a set of $(1 - \sqrt{\delta})k$ columns from each of which C reads at most $\sqrt{\delta}k$ entries.) Let $S_2 \subseteq [k]$, $|S_2| \geq k/2$, be the set of columns where C reads a $(0, \perp)$. Let $i \in [k]$ denote the unique column where X and Y differ. Note that i is a uniform random variable; for example, $\Pr[i \in S_1] = 1 - o(1)$. In what follows, we take \approx to mean up to a $(1 \pm o(1))$ factor. We calculate:

$$\Pr[C(Y) = 1] \geq \Pr[C(Y) = 1 \text{ and } i \in S_1]
\approx \Pr[C(Y) = 1 \mid i \in S_1]
= \Pr[C(Y) = 1 \text{ and } i \in S_2 \mid i \in S_1] + \Pr[C(Y) = 1 \text{ and } i \notin S_2 \mid i \in S_1]
= \lambda \cdot \Pr[C(Y) = 1 \mid i \in S_1 \cap S_2] + (1 - \lambda) \cdot \Pr[C(Y) = 1 \mid i \in S_1 \setminus S_2],$$

where $\lambda := \Pr[i \in S_2 \mid i \in S_1] \geq 1/2 - o(1)$. In the first term, the condition $(i \in S_1 \cap S_2)$ means that C reads a single $(0, \perp)$ and $o(k)$ many $(1, \perp)$’s from the i-th column. Hence we are in a situation analogous to that in (1), and the same argument yields

$$\text{(I)} \geq (2 - o(1)) \cdot \Pr[C(X) = 1 \mid i \in S_1 \cap S_2] \approx 2 \cdot \Pr[C(X) = 1].$$

In the second term, the condition $(i \in S_1 \setminus S_2)$ means that C reads $o(k)$ many $(1, \perp)$’s from the i-th column. Hence C cannot detect our planting of an additional $(0, \perp)$ entry in that column with probability better than $o(1)$:

$$\text{(II)} \geq (1 - o(1)) \cdot \Pr[C(X) = 1 \mid i \in S_1 \setminus S_2] \approx \Pr[C(X) = 1].$$

In summary, we get that for some $\lambda \geq 1/2 - o(1)$,

$$\Pr[C(Y) = 1] \geq (2\lambda + (1 - \lambda) - o(1)) \cdot \Pr[C(X) = 1]
\geq (3/2 - o(1)) \cdot \Pr[C(X) = 1]
\geq 1.4 \cdot \Pr[C(X) = 1].$$
5 AND-Composition Lemmas

In this section we prove Lemma 6 and Lemma 9, restated here for convenience.

Lemma 6. For all f and k, we have $\text{BPP}_{dt}(f) \leq O(\text{BPP}_{dt}(\text{AND} \circ f^k)/k)$.

Lemma 9. For all F, k, and constants $0 < \epsilon < 1/2$, we have

$$2\text{WAPP}_{cc}^k(F) \leq O(\text{BPP}_{cc}(\text{AND} \circ F^k)/k + \log \text{BPP}_{cc}(\text{AND} \circ F^k)).$$

5.1 AND-composition for query complexity

We now prove Lemma 6. For brevity let $f^* := \text{AND} \circ f^k$. Let T^* be a height-q randomized decision tree for f^* with error $1/8$. We design a height-$8q/k$ randomized decision tree for f with error $1/4$.

Let D be an arbitrary distribution over $f^{-1}(1)$. Consider the following randomized decision tree T that takes $z \in \{0,1\}^n$ as input:

1. Pick $i \in [k]$ uniformly at random and let $z_i := z$.
2. For $j \in [k] \setminus \{i\}$ sample $z_j \sim D$ independently.
3. Run $T^*(z_1,\ldots,z_k)$ until it has made $8q/k$ queries in the i-th component.
4. If T^* already produced an output in Step 3, output the same bit; otherwise output 0.

Note that with probability 1 we have $f^*(z_1,\ldots,z_k) = f(z)$. Let R_{T} denote T’s randomness and R_{T^*} denote T^*’s randomness. If $f(z) = 0$ then

$$\Pr_{R_{T}}[T(z) = 1] \leq \max_{(z_1,\ldots,z_k) \in (f^*)^{-1}(0)} \Pr_{R_{T^*}}[T^*(z_1,\ldots,z_k) = 1] \leq 1/8 \leq 1/4.$$

Furthermore,

$$\Pr_{z \sim D, R_{T}}[T(z) = 0] = \Pr_{z_1,\ldots,z_k \sim D, i \in [k], R_{T^*}}[T^*(z_1,\ldots,z_k) \text{ outputs } 0 \text{ or makes more than } 8q/k \text{ queries in the } i \text{-th component}]$$

$$\leq \max_{(z_1,\ldots,z_k) \in (f^*)^{-1}(1)} \left(\Pr_{R_{T^*}}[T^*(z_1,\ldots,z_k) = 0] + \max_{R_{T^*}} \Pr_{i \in [k]}[T^*(z_1,\ldots,z_k) \text{ makes more than } 8q/k \text{ queries in the } i \text{-th component}] \right)$$

$$\leq 1/8 + 1/8 = 1/4.$$

Now let D be an arbitrary distribution over $\{0,1\}^n$ and define T w.r.t. $(D \mid f^{-1}(1))$. We have

$$\Pr_{z \sim D, R_{T}}[T(z) \neq f(z)] = \sum_{b \in \{0,1\}} \Pr_{z \sim (D \mid f^{-1}(b)), R_{T}}[T(z) \neq b] \cdot \Pr_{z \sim D}[f(z) = b]$$

$$\leq \sum_{b \in \{0,1\}} (1/4) \cdot \Pr_{z \sim D}[f(z) = b] = 1/4.$$

By the minimax theorem, there is a height-$8q/k$ randomized decision tree (a mixture of the T’s) that on any input produces the wrong output with probability $\leq 1/4$.

5.2 Definitions

We adopt the following conventions throughout the proof of Lemma 9. We denote random variables with upper-case letters, and we denote particular outcomes of the random variables with
We now outline the proof of Lemma 9. Recall that the proof of Lemma 6 involved these steps:

(i) embedding the input into a random coordinate of a \(k \)-tuple and filling the other coordinates with random 1-inputs (to cut the cost on 1-inputs by a factor \(k \)),

(ii) aborting the execution if the cost became too high (to ensure low cost also on 0-inputs while maintaining average-case correctness on 1-inputs),

(iii) using the minimax theorem to go from average-case to worst-case correctness.

We start by noting that an analogue of (i) holds for information complexity (which lower bounds BPP\(^c\)). Then as one of our main technical contributions we prove an analogue of (ii) for information complexity. Then inbetween (ii) and (iii) we insert a step applying the known result that information complexity upper bounds 2WAPP\(^c\) in the distributional setting. Finally we use the analogue of (iii) for 2WAPP\(^c\). Formally, Lemma 9 follows by stringing together the following lemmas.

Lemma 14. Fix any \(F, k, 0 < \epsilon < 1/2 \), and distribution \(D \) over \(F^{-1}(1) \). For every \(\epsilon \)-correct protocol \(\Pi \) for AND \(\circ F^k \) there is an \(\epsilon \)-correct protocol \(\Pi' \) for \(F \) with IC\(_D\)(\(\Pi' \)) \(\leq \) CC\((\Pi)\)/\(k \) and CC\((\Pi')\) \(\leq \) CC\((\Pi)\).

Lemma 15. Fix any \(F \), constants \(0 < \epsilon < \delta < 1/2 \), and input distribution \(D \), and let \(D^1 \) := \((D \mid F^{-1}(1)) \). For every \((\epsilon, D) \)-correct protocol \(\Pi \) there is a \((\delta, D) \)-correct protocol \(\Pi' \) with IC\(_D\)(\(\Pi' \)) \(\leq \) O(\(\text{IC}_{D^1}(\Pi) + \log(\text{CC}(\Pi) + 2) \)).

Lemma 16. Fix any \(F \), constants \(0 < \epsilon < \delta < 1/2 \), and input distribution \(D \). For every \((\epsilon, D) \)-correct protocol \(\Pi \) we have 2WAPP\(^c\)\(_{\delta,D}(F) \leq O(\text{IC}_D(\Pi) + 1)\).
Lemma 17. Fix any \(F \) and \(0 < \epsilon < 1/2 \). Then \(2\text{WAPP}^{cc}_\epsilon(F) \leq 2 + \max D 2\text{WAPP}^{cc}_\epsilon,F,D(F). \)

Lemma 14 is a standard application of the “direct sum” property of information cost; for completeness we sketch the argument in Appendix A. Lemma 15 is proved in Section 5.4 and relies on [BW15a]. Lemma 16 is due to [KLL+12, Theorem 1.1 of the ECCC version]. Lemma 17 follows from an argument in [KLL+12, Appendix A of the ECCC version] that uses LP duality; for completeness, in Appendix A we give a more intuitive version of the argument phrased in terms of the minimax theorem.

The moral conclusion of Lemma 15 is that “one-sided information complexity” is essentially equivalent to “two-sided information complexity” for average-case protocols. Combining Lemma 15 with [Bra12, Theorem 3.5 of the ECCC version] shows that a similar equivalence holds for worst-case protocols. More specifically, a distribution-independent definition of information complexity for bounded-error protocols can be obtained by maximizing over all input distributions; our corollary shows that this measure is essentially unchanged if we maximize only over distributions over 1-inputs (or symmetrically, 0-inputs). This is not needed for our results, but may be of independent interest.

Corollary 18. Fix any \(F \), constants \(0 < \epsilon < \delta < 1/2 \), and \(b \in \{0,1\} \). Then

\[
\inf_{\delta\text{-correct protocols } \Pi} \max_{D \text{ over all inputs}} \text{IC}_D(\Pi) \leq \max_{D \text{ over } b\text{-inputs}} \inf_{\epsilon\text{-correct protocols } \Pi} O(\text{IC}_D(\Pi) + \log(\text{CC}(\Pi) + 2)).
\]

5.4 One-sided information vs. two-sided information

Intuition for Lemma 15. Recall the following idea, which was implicit in the proof of Lemma 6. Suppose we have a randomized decision tree computing some function, and we have a bound \(b \) on the expected number of queries made over a random 1-input. Then to obtain a randomized decision tree with a worst-case query bound, we can keep track of the number of queries made during the execution and halt and output 0 if it exceeds, say, \(8b \). Correctness on 0-inputs is maintained since we either run the original decision tree to completion and thus output 0 with high probability, or we abort and output 0 anyway. We get average-case correctness on 1-inputs since by Markov’s inequality, with probability at least \(7/8 \) the original decision tree uses at most \(8b \) queries, in which case we run it to completion and output 1 with high probability.

The high-level intuition is to mimic this idea for information complexity. We have a protocol with a bound on the information cost w.r.t. the distribution \(D \) over 1-inputs. The “information odometer” of [BW15a] allows us to “keep track of” information cost, so we can halt and output 0 if it becomes too large. This will guarantee that the information cost is low w.r.t. the input distribution \(D \), and correctness on 0-inputs is maintained. However, there is a complication with showing the average-case correctness on 1-inputs.

For each computation path specified by an input \((x,y)\), an outcome of public randomness \(r \), and a full sequence of messages \(m \), there is a contribution \(c_{x,y,r,m} \) such that the information cost w.r.t. \(D \) is the expectation of \(c_{x,y,r,m} \) over a random computation path with \((x,y) \sim D \). Similarly, there is a contribution \(c^1_{x,y,r,m} \) such that the information cost w.r.t. \(D^1 \) is the expectation of \(c^1_{x,y,r,m} \) over a random computation path with \((x,y) \sim D^1 \). These contributions play the role of “number of queries” along a computation path in the decision tree setting, but a crucial difference is that \(c_{x,y,r,m} \neq c^1_{x,y,r,m} \) in general; i.e., the contribution to information cost depends on the input distribution (whereas number of queries did not). To show the average-case correctness on 1-inputs, we need a bound on the typical value of \(c_{x,y,r,m} \), whereas the assumption that information cost w.r.t. \(D^1 \) is low gives us a bound on the typical value of \(c^1_{x,y,r,m} \).
Thus the heart of the argument is to show that typically, $c_{x,y,r,m}$ is not much larger than $c^I_{x,y,r,m}$. Intuitively, one might expect the difference to be at most 1, since the only additional information that can be revealed (beyond what is revealed under D^1) should be the fact that (x, y) is a 1-input (which is 1 bit of information). More precisely, we show that for given (x, y), the expected difference depends on how balanced F is on the x row and the y column. Then we just need to note that F is typically reasonably balanced for both the x row and the y column.

Formal proof of Lemma 15. Assume w.l.o.g. that every execution of Π communicates exactly the same number of bits, and that Alice always sends a bit in odd rounds and Bob always sends a bit in even rounds (by inserting dummy coin flip rounds if necessary). As shown in [BW15a], we can also assume that Π is “smooth” (i.e., in every step, the bit to be communicated is 1 with probability between $1/3$ and $2/3$)—this is needed in order to apply Lemma 19 below.

Consider a probability space with random variables X,Y,R,R_A,R_B,M,F where $(X,Y) \sim D$ is the input, (R,R_A,R_B) is Π’s randomness, $M := M_1, \ldots, M_{CC(\Pi)}$ is the sequence of bits communicated by Π, and $F := F(X,Y)$ is the function value. For convenience of notation, if we condition on “x”, this is shorthand for conditioning on “$X = x$”. Letting $t \in \{1, \ldots, CC(\Pi)\}$ and letting D denote KL-divergence (relative entropy), if we define

\[
d_{x,y,r,m,<t} := D \left(\frac{M_t | x,y,r,m_{<t}}{M_t | y,r,m_{<t}} \right) + D \left(\frac{M_t | x,y,r,m_{<t}}{M_t | x,r,m_{<t}} \right),
\]

\[
c_{x,y,r,m} := \sum_t d_{x,y,r,m,<t},
\]

\[
c_{x,y} := E[c_{X,Y,R,M} | x,y],
\]

then it can be seen [BW15a, Appendix C of the ECCC version] that

\[
IC_D(\Pi) = E[c_{X,Y,R,M}] = E[c_{X,Y}].
\]

(2)

Note that if t is odd the second term of $d_{x,y,r,m,<t}$ is 0, and if t is even the first term is 0; hence we think of $d_{x,y,r,m,<t}$ as defined by a single term (depending on who communicates in round t).

Although the following lemma was not explicitly stated in this way in [BW15a], it follows immediately from the corresponding part of the argument for the “conditional abort theorem” in that paper [BW15b].

Lemma 19 (Odometer). For every smooth protocol Π, constant $\gamma > 0$, input distribution D, and $I > 0$, there is a protocol Π^* with $IC_D(\Pi^*) \leq O(I + \log(CC(\Pi) + 2))$ that simulates Π in the following sense: Π^* uses the same randomness (R,R_A,R_B) as Π and some additional, independent randomness Q. Consider any fixed output x,y,r,r_A,r_B, and let m be Π’s messages. Then

(i) for every q, Π^* outputs either \perp or the same bit that Π does, and

(ii) if $c_{x,y,r,m} \leq I$ then $P_Q[\Pi^* outputs \perp] \leq \gamma$.

Define $\gamma := (\delta - \epsilon)/5$. To obtain Π' witnessing Lemma 15, we obtain Π^* from Lemma 19 with $I := (IC_D(\Pi)/\gamma + 2 \log(1/\gamma))/\gamma$ and replace the output \perp with 0. Then we have $IC_D(\Pi') = IC_D(\Pi^*) \leq O(I + \log(CC(\Pi) + 2))$, so we just need to verify that Π' is (δ, D)-correct. In the following, we use Π, Π^*, Π' to denote random variables (jointly distributed with X,Y,R,R_A,R_B,M,F,Q) representing the outputs of the protocols.

Claim 20. $P[c_{X,Y,R,M} > I$ and $F = 1] \leq 4\gamma$.

14
Assuming Claim 20, we have
\[
P[\Pi' \neq \Pi = F] = P[\Pi = \bot \text{ and } \Pi = F = 1] \\
\leq P[\Pi = \bot \text{ and } F = 1] \\
\leq P[c_{X,Y,R,M} > I \text{ and } F = 1] + P[\Pi = \bot \mid c_{X,Y,R,M} \leq I \text{ and } F = 1] \\
\leq 4\gamma + \gamma = 5\gamma
\]
where the first line follows by construction of \(\Pi'\) and part (i) of Lemma 19, and the fourth line follows by Claim 20 and part (ii) of Lemma 19. Finally,
\[
P[\Pi' \neq F] \leq P[\Pi \neq F] + P[\Pi' \neq \Pi = F] \leq \epsilon + 5\gamma = \delta
\]
since \(\Pi\) is \((\epsilon, D)\)-correct. This finishes the proof of Lemma 15.

To prove Claim 20, we first need to state another claim. Analogously to the notation leading up to (2), if for \((x,y)\) \(\in F^{-1}(1)\) we define
\[
d_{x,y,r,m}^1 := D\left(\frac{M_t | x, y, r, m_{<t}}{M_t | y, r, m_{<t}, F = 1}\right) + D\left(\frac{M_t | x, y, r, m_{<t}}{M_t | x, r, m_{<t}, F = 1}\right), \\
c_{x,y,r,m}^1 := \sum_t d_{x,y,r,m_{<t}}^1, \\
c_{x,y}^1 := \mathbb{E}[c_{X,Y,R,M}^1 \mid x, y],
\]
then we have
\[
IC_{D^1}(\Pi) = \mathbb{E}[c_{X,Y,R,M}^1 \mid F = 1] = \mathbb{E}[c_{X,Y}^1 \mid F = 1]. \quad (3)
\]

Claim 21. For \((x,y)\) \(\in F^{-1}(1)\), we have
\[
c_{x,y} - c_{x,y}^1 \leq \log\left(\frac{1}{P[F = 1 \mid y]}\right) + \log\left(\frac{1}{P[F = 1 \mid x]}\right).
\]

Proof of Claim 20. For any \((x,y)\), by Markov’s inequality we have
\[
P[c_{X,Y,R,M} > c_{X,Y}/\gamma \mid x,y] \leq \gamma. \quad (4)
\]
Say \(y\) is bad if \(\mathbb{P}[F = 1 \mid y] \leq \gamma\), and \(x\) is bad if \(\mathbb{P}[F = 1 \mid x] \leq \gamma\). By Claim 21 and a union bound,
\[
P[c_{X,Y} > c_{X,Y}^1 + 2\log(1/\gamma) \text{ and } F = 1] \leq \mathbb{P}[(Y \text{ is bad or } X \text{ is bad}) \text{ and } F = 1] \\
\leq \mathbb{P}[F = 1 \mid Y \text{ is bad}] + \mathbb{P}[F = 1 \mid X \text{ is bad}] \\
\leq 2\gamma. \quad (5)
\]
By Markov’s inequality and (3) we have
\[
P[c_{X,Y} > IC_{D^1}(\Pi)/\gamma \text{ and } F = 1] \leq P[c_{X,Y}^1 > IC_{D^1}(\Pi)/\gamma \mid F = 1] \leq \gamma. \quad (6)
\]
Claim 20 follows by combining (4), (5), and (6) using a union bound. \(\square\)

Proof of Claim 21. Fix \((x,y)\) \(\in F^{-1}(1)\). Let \(M_A := M_1, M_3, \ldots\) be the bits sent by Alice, and let \(M_B := M_2, M_4, \ldots\) be the bits sent by Bob. Let \(M_{A,<t} := M_1, M_3, \ldots, M_k\) where \(k\) is the largest odd value \(< t\), and let \(M_{B,<t} := M_2, M_4, \ldots, M_k\) where \(k\) is the largest even value \(< t\).
For the moment, also consider any fixed r, r_B. Consider a separate probability space with random variables X^*, M^* distributed as $(X, M|y, r, r_B)$, and note that for even t, M_t^* is a deterministic function of $M_{A,<t}^*$. For the conditioning notation in the following, let $x^* := x$. We have

$$
\sum_{\text{odd } t} \mathbb{E}[d_{X,Y,R,M,<t} | x, y, r, r_B] = \sum_{\text{odd } t} \mathbb{E}[M_{A,<t}^* | x^*, M_{A,<t}^*] \left[\mathbb{D} \left(\frac{M_t^* | x^*, M_{A,<t}^*}{M_t^*} \right) \right] x^*
$$

$$= \mathbb{D} \left(\frac{M_A^* | x}{M_A^*} \right)
$$

$$= \mathbb{D} \left(\frac{M_B | x, y, r, r_B}{M_B | y, r, r_B} \right)
$$

where the middle equality is a direct application of the chain rule for \mathbb{D}. Similarly, for any fixed r, r_A, we have

$$
\sum_{\text{even } t} \mathbb{E}[d_{X,Y,R,M,<t} | x, y, r, r_A] = \mathbb{D} \left(\frac{M_B | x, y, r, r_A}{M_B | x, r, r_A} \right).
$$

Then (no longer fixing any of r, r_A, r_B) we have

$$c_{x,y} = \mathbb{E}[\sum_t d_{X,Y,R,M,<t} | x, y] = \mathbb{E}_{R,R_B} \left[\sum_{\text{odd } t} \mathbb{E}[d_{X,Y,R,M,<t} | x, y, r, r_B] + \mathbb{E}_{R,R_A} \left[\sum_{\text{even } t} \mathbb{E}[d_{X,Y,R,M,<t} | x, y, r, r_A] \right] \right]
$$

$$= \mathbb{E}_{R,R_B} \left[\mathbb{D} \left(\frac{M_A | x, y, r, r_B}{M_A | y, r, r_B} \right) \right] + \mathbb{E}_{R,R_A} \left[\mathbb{D} \left(\frac{M_B | x, y, r, r_A}{M_B | x, r, r_A} \right) \right] \quad \text{(7)}
$$

and similarly,

$$c_{x,y}^1 = \mathbb{E}_{R,R_B} \left[\mathbb{D} \left(\frac{M_A | x, y, r, r_B}{M_A | y, r, r_B, F = 1} \right) \right] + \mathbb{E}_{R,R_A} \left[\mathbb{D} \left(\frac{M_B | x, y, r, r_A}{M_B | x, r, r_A, F = 1} \right) \right]. \quad \text{(8)}
$$

Note that

$$
\mathbb{D} \left(\frac{M_A | x, y, r, r_B}{M_A | y, r, r_B} \right) - \mathbb{D} \left(\frac{M_A | x, y, r, r_B}{M_A | y, r, r_B, F = 1} \right)
$$

$$= \sum_m P[m_A | x, y, r, r_B] \cdot \log \left(\frac{P[m_A | x, y, r, r_B, F = 1]}{P[m_A | y, r, r_B]} \right)
$$

$$\leq \sum_m P[m_A | x, y, r, r_B] \cdot \log(1/P[F = 1 | y])
$$

$$= \log(1/P[F = 1 | y]) \quad \text{(9)}
$$

and similarly,

$$
\mathbb{D} \left(\frac{M_B | x, y, r, r_A}{M_B | x, r, r_A} \right) - \mathbb{D} \left(\frac{M_B | x, y, r, r_A}{M_B | x, r, r_A, F = 1} \right) \leq \log(1/P[F = 1 | x]) \quad \text{(10)}
$$

Claim 21 follows by combining (7), (8), (9), and (10) using linearity of expectation. □
A Appendix: Basic Lemmas

A.1 Proof of Lemma 14

Write the input to \(\text{AND} \circ F^k \) as \((X_1, Y_1), \ldots, (X_k, Y_k)) \sim D^k\). Let \((R, R_A, R_B)\) be \(\Pi\)'s randomness and \(M\) be \(\Pi\)'s messages. It is known (see [BR14, Lemma 3.14 of the ECCC Revision #1 version] and [BM13, Fact 2.3 of the ECCC Revision #1 version]) that

\[
\text{CC}(\Pi) \geq \text{IC}_{D^k}(\Pi) \geq \sum_{i=1}^{k} \text{I}(R, M ; X_i | X_{1, \ldots, i-1, Y_i, Y_{i+1, \ldots, k}}) + \text{I}(R, M ; Y_i | X_{1, \ldots, i-1, X_i, Y_{i+1, \ldots, k}}).
\]

Therefore there exists \(i\) and \(x_{1, \ldots, i-1}, y_{i+1, \ldots, k}\) such that

\[
\text{CC}(\Pi)/k \geq \text{I}(R, M ; X_i | x_{1, \ldots, i-1, Y_i, y_{i+1, \ldots, k}}) + \text{I}(R, M ; Y_i | x_{1, \ldots, i-1, X_i, y_{i+1, \ldots, k}})
\]

which is exactly \(\text{IC}_{D}(\Pi')\) where \(\Pi'\) is the following protocol with input denoted \((X_i, Y_i)\):

1. Sample the same public randomness \(R\) as \(\Pi\).
2. Alice privately samples \(R_A\) and \(X_{i+1, \ldots, k}\) according to \(D^{k-i}\) conditioned on \(y_{i+1, \ldots, k}\).
3. Bob privately samples \(R_B\) and \(Y_{1, \ldots, i-1}\) according to \(D^{i-1}\) conditioned on \(x_{1, \ldots, i-1}\).
4. Run \(\Pi\) on input \((x_{1, \ldots, i-1, X_i, X_{i+1, \ldots, k}}, Y_{1, \ldots, i-1, Y_i, y_{i+1, \ldots, k}})\) with randomness \((R, R_A, R_B)\).

Trivially, \(\text{CC}(\Pi') \leq \text{CC}(\Pi)\). The \(\epsilon\)-correctness of \(\Pi'\) follows from the \(\epsilon\)-correctness of \(\Pi\) since with probability 1, \(F(x_j, y_j) = 1\) for \(j < i\) and \(F(x_j, y_j) = 1\) for \(j > i\) and thus

\[
(\text{AND} \circ F^k)((x_{1, \ldots, i-1, X_i, X_{i+1, \ldots, k}}, Y_{1, \ldots, i-1, Y_i, y_{i+1, \ldots, k}})) = F(X_i, Y_i).
\]

A.2 Proof of Lemma 17

Define \(\alpha^*\) such that \(\log(1/\alpha^*) = \max_D 2\text{WAPP}_{cc}^{\epsilon,D}(F)\). Consider the following two-player zero-sum game.

- Each pure row strategy is an input \((x, y)\) to \(F\).
- Each pure column strategy is a distribution \(\mu\) over pairs \((S, b)\), where \(S\) is a rectangle and \(b \in \{0, 1, \bot\}\), such that \(P_{(S, b) \sim \mu}[(x, y) \in S \text{ and } b \neq \bot] \leq \alpha^*\) holds for each \((x, y)\).
- The payoff to the column player is \(P((x, y), \mu) := P_{(S, b) \sim \mu}[(x, y) \in S \text{ and } b = F(x, y)]\).

We claim that for every mixed row strategy \(D\) there exists a pure column strategy \(\mu\) such that \(\mathbb{E}_{(x, y) \sim D}[P((x, y), \mu)] \geq (1-\epsilon)\alpha^*.\) By assumption, there exists a \(2\text{WAPP}_{cc}^{\epsilon,D}\) protocol \(\Pi\) with communication cost \(c\) and associated \(\alpha\) satisfying \(c + \log(1/\alpha) \leq \log(1/\alpha^*)\). Assume \(\Pi\) only uses public randomness (by making any private randomness public). Consider the distribution \(\mu\) over pairs \((S, b)\) sampled as follows:

- with probability \(1 - \alpha^* \cdot 2^c/\alpha\), let \(S\) be arbitrary and \(b = \bot\);
- otherwise, sample the randomness of \(\Pi\) and a uniformly random transcript (of which we may assume there are exactly \(2^c\) many) from the induced deterministic protocol, and let \((S, b)\) be the rectangle and output of that transcript.
Then for each \((x, y)\),
\[
P_{(S, b) \sim \mu}[(x, y) \in S \text{ and } b \neq \bot] = (\alpha^* \cdot 2^c / \alpha) \cdot P_{\Pi \text{’s randomness}}[\Pi(x, y) \neq \bot] \cdot P_{\text{uniform transcript}}[\Pi(x, y) \text{ has that transcript}]
\leq (\alpha^* \cdot 2^c / \alpha) \cdot \alpha \cdot (1/2^c)
= \alpha^*
\]
so \(\mu\) is a valid pure column strategy. Similarly, for each \((x, y)\) we have
\[
P((x, y), \mu) = (\alpha^*/\alpha) \cdot P_{\Pi \text{’s randomness}}[\Pi(x, y) = F(x, y)],
\]
and thus
\[
E_{(x, y) \sim D}[P((x, y), \mu)] = (\alpha^*/\alpha) \cdot P_{(x, y) \sim D, \Pi \text{’s randomness}}[\Pi(x, y) = F(x, y)] \geq (1 - \epsilon) \alpha^*.
\]

Since the set of all pure column strategies \(\mu\) forms a polytope, and since \(P((x, y), \mu)\) is an affine function of \(\mu\) for each \((x, y)\), we may consider w.l.o.g. only the finitely-many pure column strategies that are vertices of the polytope. Thus we may employ the minimax theorem to find a mixed column strategy \(\nu\) such that for every pure row strategy \((x, y)\) we have
\[
E_{\mu \sim \nu} = (1 - \epsilon) \alpha^*.
\]

Consider a protocol \(\Pi\) that publicly samples \(\mu \sim \nu\) and \((S, b) \sim \mu\), then checks whether \((x, y)\) is in \(S\) (with 2 bits of communication) and outputs \(b\) if so and \(\bot\) if not. Then for each \((x, y)\),
\begin{itemize}
 \item \(P[\Pi(x, y) \neq \bot] = E_{\mu \sim \nu}[P_{(S, b) \sim \mu}[(x, y) \in S \text{ and } b \neq \bot]] \leq E_{\mu \sim \nu}[\alpha^*] = \alpha^* \text{ by the definition of pure column strategies, and}
 \item \(P[\Pi(x, y) = F(x, y)] = E_{\mu \sim \nu}[P_{(S, b) \sim \mu}[(x, y) \in S \text{ and } b = F(x, y)]] = E_{\mu \sim \nu}[P((x, y), \mu)] \geq (1 - \epsilon) \alpha^*.
\end{itemize}

Thus \(\Pi\) witnesses that \(2WAP_{\epsilon}^c(F) \leq 2 + \log(1/\alpha^*)\).

Acknowledgments

We thank Mark Braverman and Omri Weinstein for discussions.

References

Mark Braverman and Omri Weinstein. Personal communication, 2015.

