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ABSTRACT
Driving is known to be a daily stressor. Measurement of
driver’s stress in real-time can enable better stress manage-
ment by increasing self-awareness. Recent advances in sens-
ing technology has made it feasible to continuously assess
driver’s stress in real-time, but, it requires equipping the
driver with these sensors and/or instrumenting the car. In
this paper, we present “GStress”, a model to estimate driver’s
stress using only smartphone GPS traces. The GStress model
is developed and evaluated from data collected in a mobile
health user study where 10 participants wore physiological
sensors for 7 days ( for an average of 10.45 hours/day) in
their natural environment. Each participant engaged in 10 or
more driving episodes, resulting in a total of 37 hours of driv-
ing data. We find that major driving events such as stops,
turns, and braking increase stress of the driver. We quantify
their impact on stress and thus construct our GStress model
by training a Generalized Linear Mixed Model (GLMM) on
our data. We evaluate the applicability of GStress in predict-
ing stress from GPS traces, and obtain a correlation of 0.72.
By obviating any burden on the driver or the car, we believe,
GStress can make driver’s stress assessment ubiquitous.
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INTRODUCTION
Daily stress experienced during driving [17] may increase
the likelihood of adverse events (e.g., accidents and traffic
fatalities [12, 20]) and contribute to adverse health. Re-
peated occurrences of stress can cause or worsen cancer [36],
heart diseases [7], hypertension [2], aging [28], shrinking of
brain [16], fatigue, depression, and rage [24, 25]. Conse-
quently, there has been tremendous interest in both the sci-
entific community as well as the technology and automotive
industry [5, 15, 42] in developing systems to measure stress
in real-time in order to enhance stress-awareness of drivers
and to deliver just-in-time stress interventions [22, 27].
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Driver stress had traditionally been measured post-hoc via
self-reports [17] or biofluid assays [11]. Emergence of phys-
iological sensors such as electrocardigram (ECG) and gal-
vanic response (GSR) and their instrumentation on drivers [9]
or in the car [5, 15, 42] has made continuous stress mea-
surement feasible. Research on developing accurate measure
of stress during driving from physiological sensors has been
an active area of research for more than a decade now [14,
40]. More recently, these physiological measures have been
supplemented with data collected from the car about driv-
ing events such as steering wheel movements and braking
episodes [35], and information about driving conditions from
the environment [34]. In addition, video has been used to
capture driver’s facial expressions to detect stress during driv-
ing [29]. Recent research is exploring the role of extraneous
cognitive load on the driver (e.g., texting, navigation) [41]
that may further escalate a driver’s stress.

Stress monitoring of drivers is yet to be ready for wider adop-
tion, though. This is because monitoring of driver’s stress to-
day requires either having the drivers wear physiological sen-
sors or instrumenting the car with sensors and cameras. For
stress monitoring to be widely available, a method is needed
that can infer stress from data collected passively by com-
monly used existing technology, such as mobile phones.

In this paper, we propose a model named GStress to estimate
the stress level of drivers from GPS traces. GPS sensors are
readily available in current navigation systems and more and
more smart phones are also equipped with GPS – making
attainment of GPS traces in real-time increasingly feasible.
Drivers can use the GStress model to become more aware of
their stress during driving, overlay the stress data on a map
to identify road segments frequently associated with elevated
stress to plan their route accordingly, and adapt their driving
behaviors if needed. GStress model can also help inform the
design and use of in-vehicle technologies. For example, calls
or texts can be blocked or postponed if the driver is stressed.
Wide adoption of such models can be used to annotate traffic
maps with current stress levels being experienced by drivers
on various routes, similar to real-time traffic update displayed
by the navigation systems. Such data can also be used by city
planners to identify pain points in a city’s road network (e.g.,
difficult intersections that cause stress in many drivers).

To develop the GStress model, we used physiological data
collected from 30 human volunteers who wore AutoSense [9]
sensors for at least 10 hours/day for a week in their natural
environment. However, 19 of these 30 volunteers were living
on the university campus and rarely used a vehicle for com-



mute. The remaining 11 participants had at least 10 driving
episodes and in this paper we only report data collected from
these participants.

We use GPS and self-report data to identify driving episodes
from the entire day’s data. For model development, we first
analyze driving episodes to identify events that have been
shown to be stressful, which include stops, braking, and turns.
Next, considering the wide variability across individuals in
stress reactivity, we develop a Generalized Linear Mixed
Model (GLMM) that separates the effects of between-person
variability. The GLMM model also permits exploiting non-
linear relationships while retaining the simplicity of a linear
regression. By using three factors (stops, turns, and brak-
ing) from the GPS traces, our model obtains an r value of
0.72 for predicting stress from GPS traces. We then obtain
a population estimate of the person-specific biases and ob-
tain a person-independent model. Using leave-one-subject-
out evaluation, our model provides a median (across all par-
ticipants) r value of 0.687 while a person-dependent model
improves this median correlation to 0.762. We find that stops
have the highest impact on stress, confirming the widespread
belief that impedance is the genesis of stress during com-
mute [17], with quantitative data from real-life driving.

RELATED WORK
Assessment of driver’s stress is an active area of research.
However, most of the existing research focus on measuring
stress from physiological data [14, 40], video [29], and acous-
tic data [21]. More recently, these measurements have been
supplemented with driving and traffic information [35, 41].
For example, [35] performed real-time stress detection us-
ing physiological signals and measurements obtained from
the vehicle’s CAN-bus (e.g., speed, RPM, and throttle) and
combined the physiological stress response with driving be-
haviors (e.g., overtake, hard brake, etc.) to improve accuracy.
They trained a stress model from self-reported data. However,
self-reports are episodic, prone to bias, noise, and misreport,
and is less reliable for training stress models [31].

Measurement of driver’s stress has traditionally been confined
to simulators due to the difficulty, effort, and risk involved in
collecting data in the natural environment [22, 41]. The lim-
ited number of studies that are conducted in the natural envi-
ronment followed scripted routes under supervision for a lim-
ited duration [14, 37, 40]. For example, in [14], four drivers
wore physiological sensors during highway and urban driv-
ing episodes and self-report showed that urban driving was
more stressful than highway, which, in turn, was more stress-
ful than when parked in a garage. A continuous rating of
stress was also obtained, however, this stress model was not
validated against behaviorally accepted measures of stress.

To the best of our knowledge, this is the first study that
collected continuous stress data from uncontrolled and un-
scripted driving episodes where participants drove their own
vehicles. In addition, while most existing research utilize
driving event measurements together with physiological mea-
surements [14, 40] to improve stress measurement accuracy,
we present a model for stress estimation using GPS traces ob-
tained via smart phone alone.

DATA COLLECTION PROCEDURE
To obtain continuous stress measures experienced by drivers
during (unscripted) driving, we conducted a week-long mo-
bile health user study on stress, where participants wore a
physiological sensor suite and carried a smart phone with
GPS for at least 10 hours/day in their natural environment.
The physiological data thus collected is processed (by apply-
ing a validated stress model [31]) to obtain a continuous mea-
sure of stress experienced by these participants and to identify
association between stress and various driving events. In this
section, we describe the devices and measures used in this
study.

Participants: A total of 30 participants (15 females) com-
pleted the study. Our participants were university students
with an average age of 24 years(SD = 4.5 years). The goal
of the study was to assess stress in the natural environment
where commute is a part of daily life. However, 19 of these
30 participants lived in or around campus and did not drive
frequently, resulting is very few driving episodes. We ex-
cluded all data collected from participants with less than 10
driving episodes from our analysis and model development.

Sensor Suite: Our participants wore a wireless sensor suite
called AutoSense [9] underneath their clothes. AutoSense
consists of two unobtrusive, flexible bands worn about the
chest and upper arm, respectively. The chest band provided
respiration data by measuring the expansion and contraction
of the chest via inductive plethysmography (RIP), two-lead
electrocardiograph (ECG), and 3-axis accelerometer. Mea-
surements collected by the sensors were transmitted wire-
lessly to a Sony Ericsson Xperia X8 smart phone. The sam-
pling rates for the chest band were 21.33 HZ for RIP, 256
HZ for ECG, and 10.67 HZ for each of the three axes of ac-
celerometers, and 1 HZ for battery level. These samples were
sent 28 times/second with each packet containing 8 bytes of
data and consisting of 5 samples.

Mobile Phone: Participants carried a smart phone cus-
tomized to communicate with the sensor suite. The smart
phone had three roles. First, it received and stored data trans-
mitted by the sensor suite. Second, it stored data from the
phone sensors, including GPS and accelerometers and these
measurements were synchronized to the measurements trans-
mitted from AutoSense. Finally, participants used the phone
to complete system-initiated self-reports in the field.

Self-report Measures: In addition to the sensor measure-
ments, data was collected from participants using self-reports,
up to 20 times each day, which was administered on the study
phone. The 26-item survey asked participants to rate their
subjective stress level on a 6-point Likert scale [19] as well
as provided additional contextual data such as whether the
participant was riding or driving a vehicle. Participants were
allowed to postpone or not answer a prompt. We note that
data obtained using self-reports was only used for identifying
drivers and not for modeling stress.

Continuous Stress Measure: The entire day (including the
driving episodes) was divided into 30 second segments and
the stress state for each segment was computed as a con-



tinuous measure in terms of posterior probability of being
stressed using the model presented in [31]. Stress estimation
from ECG has traditionally relied on a single feature (e.g.,
heart rate or heart rate variability) [24, 25]. Machine learning
models that identify a more specific fingerprint of physiolog-
ical activation began emerging in the past decade [14]. We
utilized the model developed in [31] as it has been validated
in the lab and the natural field environment. Although the ini-
tial model was developed to provide a binary stress output for
each 1 minute of physiological data, we adapted the model
to provide a stress state for each 30 second segment. We re-
duced the granularity from 1 minute to 30 seconds to capture
stress levels associated with events such as braking, stops,
and turns, events which may not last a minute. As the stress
model uses statistics such as heart rate and heart rate variabil-
ity, using a window smaller than 30 second will reduce the
accuracy of the stress model to below 80%. This model pro-
vides a continuous stress measure that is normalized between
0 and 1, where stress values can be interpreted as No, Low,
Moderate, High, and Extremely High stress for the ranges of
0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1 respectively.

DETECTION OF TRAFFIC EVENTS
We now describe methods that we use to computationally de-
tect potentially stressful driving events from GPS traces. We
first define each event and then describe the computational
method we use to detect them. In most cases, our goal is to
compute the duration of these events.

Driving Episode
Definition: Vehicular movements are usually sandwiched be-
tween walking segments. Start time of a vehicular movement
episode occurs when the speed (obtained from GPS samples)
is over the maximum gait speed of 2.53 meter/sec [4]. A ve-
hicular movement episode is considered a driving episode if
the participant is the driver. A driving episode consists of
various driving events such as stops, turns, congestions, etc.

Computation: In order to determine whether the participant
was driving or riding in a commuting episode, we used partic-
ipant’s response to the self-report question (completed upon
conclusion of the driving episode): If you commuted since
the last prompt, what type? with possible answers — Driv-
ing, Biking, Walking, Riding as a Passenger, Riding Public
Transportation, and Did not commute.

Duration of Stop Segments
Definition: Stop segments refer to parts of the driving episode
when the vehicular speed obtained from GPS reaches zero.
Usually, stops occur when a vehicle encounters a road in-
tersection and the traffic signal is red, there is a stop sign,
or when the car is maneuvering (e.g., moving in or out of a
drive-way). A stop segment can consist of multiple consecu-
tive stops or a single stop. For our stress analysis, we separate
stop events in parking lots and garages from stop events dur-
ing driving by plotting the location of stops in Google Maps.
We discard stop events in parking lots and garages from anal-
ysis. The entire stop segment and the total stop time is defined
as the time taken between driver initiating a deceleration and
the start of the following acceleration event.

Figure 1. Distribution of driving episode counts and driving durations.
We observe that a majority of driving episodes are ≤ 30 minutes.

Computation: To compute the duration of stop segments, we
search backwards from the end time of a complete stop. We
search for the moment when the driver starts decelerating.
We consider prior 5 seconds from the final stop mark and
compute the speed difference

dv = vtstart − vtend , (1)

where tend and tstart (= tend − 5) are the end and start time
of the 5 second window respectively, vtend and vtstart are the
instantaneous speeds at time tend and tstart respectively. We
continue this process with 4 second overlaps (i.e. 1 second
sliding) until the speed difference dv at tend is less than 10%
of the speed at tstart i.e., dv ≤ 0.1 × vtstart and both of the
two speeds (i.e., vtstart and vtend ) are above the maximum
gait speed. We mark tstart as the start time of deceleration.

Merging of Closely Spaced Stops: We merge multiple stops
that appear closely with slow moving driving segments
among them. To merge these intermittent stops, we consider
5 seconds prior to the start (tstart) of each stop and compute
the area under the speed curve as follows.

Areai =

tstart∫
tstart−5

dv(t)dt, (2)

where Areai is the area associated with the ith stop under
the speed curve from time (tstart − 5) to tstart and dv is the
change in speed during that time window. If Areai < ε, then
we consider this slow moving driving segment as part of the
ith stop and replace the speed values for this time period with
zero. The backward propagation of the algorithm allows the
detection and merging of a stop with the preceding slowly
moving driving patterns until Areai ≥ ε. The value of ε can
be derived by taking the average of areas of all prior windows
across all stops. For our dataset, ε = 10.87.

Turn Detection
Definition: A turn is associated with a change in the driving
direction (of more than 30◦ [32]) and a decrease in the speed
of the vehicle. The geometric properties [13] of the curve de-
termines the amount of change in driving direction and speed.

Computation: We detect turn from changes in driving direc-
tion obtained from GPS bearing using a modified approach
proposed in [32, 45]. For speeds < 3m/s, when GPS bearing



data is less accurate, we consider the heading at current sam-
ple and fifth previous sample from the current sample. For
speeds ≥ 3m/s, we consider the heading at current sample
and third previous sample from the current sample. A turn
is detected when the absolute value of direction change (i.e.
difference between the two samples) is > 35◦ [32]. Sign of
the direction change defines the turn type (right or left).

Duration of Braking and Acceleration After Braking
Definition: Braking is a driving event that results in an im-
mediate deceleration and sometimes can result in a complete
stop. In our analysis, we consider only those braking seg-
ments that are followed by an acceleration segment. Braking
that leads to a stop are considered to be part of the corre-
sponding stop event. As a result, some braking events within
a driving episode are subsumed in stop segments. Intensity
of deceleration defines the category of braking such as neg-
ligible, moderate, and severe [8, 18]. After braking, a driver
usually starts to increase the speed up to an almost constant
speed. For our analysis, we consider this segment of speed up
after braking as an acceleration after braking segment.

Computation: For braking, we first find the local minima in
the speed curve of each driving segment and then identify
the start time of deceleration. We use “Imregionalmin” [33]
to find Regional minima and “PeakFinder” [30] to find local
minima. To identify the start time of deceleration, we exam-
ine the speed difference between prior seconds following a
similar approach that we used to identify deceleration start
time for stops. The end time of a braking segment occurs
when acceleration begins. We determine the end of an accel-
eration after braking segment by reversing the search process
we use to find the start of a braking event.

Duration of Congestion
Definition: When the demand of a road network exceeds its
capacity, the network imposes additional travel cost to all
users of the network, a situation known as vehicular conges-
tion. It can happen on a regular, cyclic basis reflecting the so-
cial and economic activities of an area or happen irregularly
in certain points in the network due to irregular occurrence of
road work, breakdown, and/or accidents [43].

Computation: We use Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [10] to detect traffic
congestion. We did not have access to surrounding traffic and
geographical information [3, 6] that could improve the detec-
tion accuracy. To apply DBSCAN, we define our core points
as those points/sample that have ≥ 3 points/sample within
the neighborhood of radius 15 meter since a driver moving as
slowly as 5 m/s can pass 15 meters in 3 seconds and mean-
while the GPS receiver can gather 3 samples at a sampling
rate of 1 Hz. After we find the core points, we consider them
together to make congestion segments. We consider only≥ 5
minutes long segments. We found only a few congestion seg-
ments in our dataset, due to unscripted natural driving.

Duration of Driving Segments
We consider those portions of a driving episode as driving
segment that remains after extracting the stops, turns, brak-
ing, acceleration after braking, and congestion segments.

G-STRESS MODEL
We first present a summary of our dataset, observed stress
patterns from physiological data, and finally present the de-
velopment and evaluation of the GStress model.

Data Summary
Of the 30 participants, 25 reported at least one instance of
driving and we obtained a total of 372 driving episodes.
For stress measurement and model development, we se-
lected only those participants who reported at least 10 driv-
ing episodes, resulting in 11 participants who contributed 295
driving episodes. We further excluded data from one partic-
ipant (ID# 31) as s/he reported having an unusually stress-
ful week. Of these 295 episodes considered initially, we ex-
cluded episodes with low quality physiological data, result-
ing in 181 (37.05 hours) driving episodes. We identified 637
stops, 1120 turns, 840 braking, and 1477 acceleration seg-
ments within these 181 driving episodes. Figure 1 shows dis-
tribution of these driving segments. The average durations of
stop, turn, braking, and acceleration after braking segments
were 2.0389 minutes (SD = 1.72 minutes), 0.28 minutes (SD
= 0.18 minutes), 0.20 minutes (SD = 0.32 minutes), and 0.44
minutes (SD = 0.51 minutes) respectively. We also observed
five congestion segments with an average duration of 5.95
minutes (SD = 1.04 minutes).

Patterns of Stress from Physiological Data
The average stress levels (obtained by applying a stress
model [31] on physiological data) during driving and rest of
the day are 0.3992 and 0.2178 (with standard errors of 0.0041
and 0.0013) respectively. Thus, driving is 83% more stressful
than rest of the day, which is consistent with existing litera-
ture [14, 35, 39, 40]. Figure 2 presents average stress level of
11 participants during driving and rest of the day.

To further examine the difference between stress during driv-
ing and rest of the day, we used a two sample t-Test with the
null hypothesis, H0 : µD = µRD, where µD and µRD are
average stress during driving and rest of the day, respectively.
We performed for individual participants and for the entire
population, i.e. on all participants together. At α = 0.05 sig-
nificance level, we reject the null hypothesis for both individ-
ual and population level with a p-value < 0.001. Therefore,
participants’ average stress levels during driving and rest of
the day are not equal. It is interesting to point out that, while
calculating stress values, we observed an anomaly for Partici-
pant ID#31. This participant had three exams and a couple of
deadlines during the study week, resulting in unusually high
levels of stress for the rest of the day. During this study week,
this participant used driving as a stress reduction technique
as s/he mentioned enjoying driving a lot. Hence, P#31’s data
was excluded from the analysis.

Development of the GStress Model
The goal of the GStress model is to estimate drivers’ stress
level during a driving episode from GPS traces. For stress
estimation, we used time duration of stops, turns, braking,
and driving segments within a driving episode.



Figure 2. Average stress levels (obtained from physiological data) during
driving and rest of the day for 11 selected participants.

The simplest model is a linear regression model with the as-
sumption that errors are normally distributed. This assump-
tion does not hold when the response variable (Y ) refers to
count, proportion, or positive continuous data. Our response
variable (Y ) refers to average stress of a driving episode, a
positive continuous data.

The next candidate is Generalized Linear Models (GLM) that
does not assume normality. GLM assumes that a linear func-
tion (η = g(.)) of the mean (µ = E[Y ]) of the response vari-
able is related to the predictors i.e. η = g(µ) = Xβ, where,
X stands for predictor variables, and β are the fixed-effects
regression coefficients. We use Gamma for the underlying
distribution that is suitable for scenarios where the response
variable are positive continuous data. We use identity as our
transformation/link function (i.e. µ = (E[Y ]) = Xβ, where,
Y = Xβ + ε). An advantage of using such a descriptive
model is that, it enables us to determine the relative impor-
tance of each factor in measuring the response variable.

Driving in the natural environment, however, may involve
unanticipated events such as phone calls/texts and adverse
weather/road conditions in addition to the major events de-
tected from GPS traces. These unaccounted factors and wide
between-person variation in stress-reactivity limits the use of
regression models such as GLM that rely on fixed effects
only, i.e. effects that can be explained with known factors
such as stops, turns, and braking.

To account for the random effects, we use Generalized Linear
Mixed Model (GLMM), a widely used model in the health re-
search domain. GLMM takes into account both the fixed ef-
fects and the random effects that cannot be estimated with
fixed effects or errors. The general form of the model is
Y = Xβ + Zγ + ε, where, Y , X , β, Z, γ, and ε stand
for the response variable, predictor variables, fixed-effects re-
gression coefficients, design matrix for random effects, ran-
dom effects, and random errors or residuals, respectively.

Our predictor variables for the fixed effects are the amount
of time (in terms of 30 second segments) affected by stop
(x3), braking (x4), turn (x5), acceleration after braking (x6),
acceleration after stop (x7), and congestion (x8). We con-
sider these segments individually and independently. To de-
termine which segment is affected by what type of driving
event, we apply majority-voting on the duration of different
driving events that occurs within or overlaps with an individ-
ual segment. We also include the stress level prior to driving

(x1) and the amount of driving time (x2) not affected by these
driving events. We scale all the predictor variables (except
x1) on a 0 to 1 scale by dividing the xi’s with the duration of
a driving episode. The output or response variable (y) is the
average stress of a driving episode. We consider person-level
variation as our random effect.

Our stress estimation model based on GPS traces, GStress is

yij = (β0 + γj) +

8∑
k=1

βkxkij + ε (3)

where, yij is the average stress of ith driving episode of per-
son j; for k = 1, . . . , 8, βk is the kth fixed effect, xkij is the
kth predictor variable for fixed effect in ith episode of jth per-
son; β0 is the fixed effect on intercept and γj is the random
effect on intercept for the jth person.

Model AIC BIC Deviance χ2 p-value
gm11 -3367.1 -3341.4 -3383.1
gm22 -3447.3 -3418.4 -3465.3 82.245 < 0.001
gm33 -95.5 -69.9 -107.88
gm44 -95.074 -66.287 -109.35 1.5678 0.2105

Table 1. χ2 test to check the significance of “person random effect” and
fixed effect “congestion” and “acceleration”.

While building the GStress model, we did not find suffi-
cient instances of congestion. We tested the significance of
both “Congestion” and “Acceleration” (both after braking and
stop) i.e. H0 : β6 = β7 = β8 = 0. We built two models
— with and without the congestion and acceleration effects
referred to as “gm44” and “gm33”, respectively. We could
not reject the H0 for χ2 = 1.5678 and p-value = 0.2105
(see Table 1) at α = 0.05 significance level. Also, model
“gm33” had lower Akaike Information Criterion (AIC) [1]
and Bayesian Information Criterion (BIC) [38] (see Table 1),
so the effect of “Congestion” and “Acceleration” was not sig-
nificant in our dataset. However, in a dataset where instances
of congestion is not minimal, congestion may have a signifi-
cant impact.

We also examined whether the random effect of subject is
significant i.e. H0 : γ = 0. We built two models — with
and without person random effect referred to as “gm22” and
“gm11”, respectively. We rejected the null hypothesis for
χ2 = 3237.8 and p-value < 0.001 (see Table 1) at α = 0.001
significance level. Also, model “gm22” had lower AIC, and
BIC (see Table 1). Hence, the person random effect is signif-
icant. Therefore, the final GStress model is
yij = (β0 + γj) +

∑5
k=1 βkxkij + ε.

Table 2 presents the proposed GStress model. Stress lev-
els prior to driving (x1), driving time without events (x2),
amount of driving time affected by stop (x3) and affected by
turn (x5) were significant at α = 0.001, amount of time af-
fected by braking(x4) was significant at α = 0.01, and inter-
cept was significant at α = 0.05. We observe that all signif-
icant fixed effect factors have positive coefficients, i.e. they
increase stress while driving. Among all the driving events,
stop has the highest weight (β3 = 0.755).



Fixed effects β SE t-value p-value
Intercept -0.445 0.181 -2.454 0.014147
x1 0.681 0.077 8.795 <0.001000
x2 0.682 0.188 3.632 0.000281
x3 0.755 0.207 3.655 0.000257
x4 0.668 0.210 3.178 0.001480
x5 0.703 0.200 3.523 0.000427

Table 2. G-Stress: Driving Stress Estimation Model. Here, SE stands for
standard error.

Figure 3. Pearson Correlation, r between actual and estimated average
stress for “leave one subject out” validation. Horizontal magenta line
corresponds to median correlation (0.687) from all 10 test subjects.

Evaluation of GStress
We obtained a Pearson Correlation, r = 0.722 for predict-
ing stress from GPS traces via the GStress model (see Ta-
ble 2). The variance for person variability, residual, and fixed
effects were 0.002, 0.188, and 0.061, respectively. Therefore,
R2

GLMM (c) = 0.252 [26], i.e. 25% variability of the data can
be explained with both fixed effect and random effect.

To evaluate the applicability of the GStress model on partici-
pants on whom no training data has been collected, we trained
the model on nine participants and applied it on the remain-
ing one participant with a population estimate of the random
effect and fixed effects. Figure 3 shows the correlation for
each subject. For this leave-one-subject-out validation, we
obtained a median correlation of 0.687.

We also evaluated the GStress model using leave-one-
episode-out validation, where we trained the model on n− 1
driving episodes out of n episodes from the same partici-
pant and applied it on the remaining one driving episode
to estimate stress. We continued this process to get n esti-
mated stress values for all n episodes and obtained correla-
tion between the estimated and actual stress of all these n
episodes. Similarly, we calculated correlation for all other
subjects via the leave-one-episode-out approach. With this
person-dependent model, we obtained a median correlation
of 0.762 (Figure 4). We observed that the person-dependent
model (Figure 4) has a better correlation than the person-
independent model (Figure 3). The minimum correlation im-
proves from 0.49 to 0.64. It suggests that the prediction ac-
curacy is likely to improve over time for any user.

To further evaluate the performance of the GStress model,
we analyzed the Bland-Altman plot [23](Figure 5). The
plot shows moderate agreement between actual and predicted
stress, however, lack of consistent agreement for values lower
than 0.4 and variability above 0.4 were mainly observed

Figure 4. Pearson Correlation, r between actual and estimated average
stress for “leave one driving episode out” validation. Horizontal ma-
genta line corresponds to median correlation.

Figure 5. Bland-Altman plot for the actual and estimated average stress
for all driving episodes obtained from GStress. Green, cyan, magenta
and red dashed lines are for 25%, 50%, 75% and 100% difference re-
spectively.

within the 50% difference levels. From Figure 5, we cannot
reject the null hypothesis, H0, that “the actual and estimated
stress values have same mean i.e. the mean of paired differ-
ences of actual average stress and predicted average stress is
zero (0)” with a p-value = 0.8893 at α = 0.1 significance
level (using paired t-test). Therefore, the two distributions,
i.e. estimated average stress values obtained from the GStress
model and the actual average stress values, were not signifi-
cantly different.

Contribution of Driving Events to Stress
We now quantify the contribution of each driving event to the
total stress. The contribution of the events depend on two fac-
tors — how frequent they occur in a typical driving episode
and their weight (β) in the driving stress model (Table 2). For
the first, we compute the amount of time (in terms of num-
ber of 30 second segments) that are classified to be affected
by a particular event. Figure 6(a) shows the fraction of time
in a driving episode that corresponds to each of the driving
events — stops, turns, brakings, and driving and Figure 6(b)
shows the contribution of these events to the overall stress
level. We observe that stops were more stressful than driving
as stops contribute 27% to the stress even though they only
occur 24% of the time. On the other hand, driving accounts
for 32% of the time, but only contributes 28% to the total
stress level. This may imply that reducing number of stops
in a driving episode may be an effective approach to reducing
stress during driving. We note that high occurrence of stops,
turns, and braking in our dataset may be due to participants
driving in university neighborhoods.
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Figure 6. (a) shows the fraction of an average driving episode that is
affected by various stressful factors i.e. frequency of events in an average
driving episode. (b) shows the contribution of each factor to the total
stress level.

CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
Our work pointed out the feasibility of estimating drivers’
stress using only GPS traces collected from the driver’s smart
phone. The proposed GStress model provides a correlation of
over 0.7 by identifying major factors such as stops, turns, and
braking associated with driving stress. This work has several
limitations that may be addressed in future research. First, the
accuracy of stress estimation can be improved by incorporat-
ing additional factors such as road information (e.g., complex
intersections, number of lanes, type of road, speed limit, lo-
cation of traffic light, curvature information, etc.) that can be
obtained from a geographic database, real-time traffic condi-
tions (e.g., level of congestion) and driving behaviors (e.g.,
patterns of acceleration and braking).

Second, dataset used in developing and evaluating GStress is
limited to 10 drivers without any scripting of the roads on
which they all drive. While it improves the ecological va-
lidity of the model, it prevents comparison with literature that
mostly prescribed scripted routes to obtain uniformity of road
conditions. A larger scale study that involves more partici-
pants for a much longer duration can generate data set that
are large enough to compare the stress responses of several
drivers when they happen to drive on the same road segments
under similar conditions. That way comparison with exist-
ing works can be done while maintaining ecological validity.
Third, even though GStress model is based on real-life dataset
from 10 drivers, these are mostly college students. The stress
response of young drivers may not accurately represent those
experienced by other populations such as seniors, or those
with a history with serious motor vehicle accidents. Fourth,
stress experienced by drivers in a specific city (from where
participants were selected for our study) may not accurately
represent stress experienced during driving in other cities in
the United States and more broadly in other parts of the world.
Additional studies need to be conducted to evaluate the gen-
eralizability of GStress or to determine the adaptations nec-
essary to improve its generalizability.

Finally, although GStress has a potential to improve stress
awareness and reduce stress of drivers, this potential is yet
to be demonstrated. Stress awareness applications or stress
interventions that make use of the GStress model need to be
developed and evaluated for its efficacy in diverse population
in various driving environments to generate evidence of clin-
ical utility of GStress in reducing drivers’ stress.
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